Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.

Smart Device Monitoring System Based on Multi-type Inertial Sensor Machine Learning

Yingqi Zeng, Chen Wang, Chih-Cheng Chen, Wang-Ping Xiong, Zhen Liu, Yu-Chun Huang, and Chaochao Shen

(Received July 20, 2020; Accepted November 24, 2020)

Keywords: accelerometer and gyroscope synergy, complex construction activity, human activity recognition, inertial sensor, category and sensor location combination

Construction activity recognition can be improved using data fusion from multiple inertial sensors such as accelerometers and gyroscopes, yet the number of accelerometers and gyroscopes and their optimal placement for combination need empirical determination. We considered the optimal combination of these two types of sensors placed on different parts of a construction worker for identifying construction activities through machine learning. The waist, arm, and wrist were equipped with data acquisition units to simultaneously acquire acceleration and angular velocity data for multiple sensor locations. A system for recognizing complex construction activities was developed on the basis of an accelerometer and gyroscope (A+G) synergy at multiple sensor locations. Results show that the A+G combination dataset at the wrist had the best activity recognition among the sensor configurations when the raw data came from a single sensor location. The results of comparing a single sensor location, two sensor locations, and three sensor locations indicate that combination with three sensor locations produced the best accuracy.

Corresponding author: Chen Wang, Chih-Cheng Chen




Forthcoming Regular Issues


Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-1
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-2
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on New Trends in Robots and Their Applications
Guest editor, Ikuo Yamamoto (Nagasaki University)


Special Issue on Artificial Intelligence in Sensing Technologies and Systems
Guest editor, Prof. Lin Lin (Dalian University of Technology)
Call for paper


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (3)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Copyright(C) MYU K.K. All Rights Reserved.