Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.

Big Data Analysis for Effective Management of Power Distribution Network

Xi Chen, Yuan La, Ji-Guang Zhao, Wei Zhang, and Ting-Cheng Chang

(Received July 20, 2020; Accepted November 16, 2020)

Keywords: information communication, big data, distribution network, intelligent, automated

To find a way to manage power distribution networks efficiently, we researched the use of big data analysis and established a model with mathematical functions to assess the benefit, risk, and economy of the power supply in a power distribution network. The necessary data were collected from the sensors in the network and analyzed with an algorithm using the particle swarm optimization (PSO) method. The powers from wind and solar energy were adopted as distributed power generation (DG) sources. The result of this study showed that the position of the access of the DG to the network is important as it affects the benefit and risk of the power supply for the network. We tested three different connections of the DG to the network, which had a 10% difference in the maximum power supply in the network. Along with the appropriate position of the DG access, the consideration of the risk assessment and the risk-taking also had a significant effect on the efficient management of the network. The model with the power supply risk function (Rps) required a four times higher power supply from the DG, yielding a higher power supply (11%) and overall benefit (44%) than those without the risk function. The degree of risk-taking also affected the management of the network as the result revealed that power supply management with high risk-taking needed less power from the DG (14%), less power supply (2%), and had one-third less overall benefit than those with low risk-taking. We expect the method and results in this study to provide a model for the effective management of a power distribution network with power from DG sources.

Corresponding author: Xi Chen

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019) (1)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website

Special Issue on Optical Sensors: Novel Materials, Approaches, and Applications
Guest editor, Yap Wing Fen (Universiti Putra Malaysia)

Special Issue on Intelligent Sensing Control Analysis, Optimization, and Automation (2)
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)

Special Issue on Geomatics Technologies for the Realization of Smart Cities (2)
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)

Special Issue on Cyber–Physical Systems (CPS) and Internet of Things (IoT)
Guest editor, Yutaka Arakawa (Kyushu University)

Special Issue on Sensors and Materials Emerging Investigators in Japan
Guest editor, Tsuyoshi Minami (The University of Tokyo)

Copyright(C) MYU K.K. All Rights Reserved.