ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 7(3) (2020)
Copyright(C) MYU K.K.
pp. 2475-2492
S&M2276 Research Paper of Special Issue
https://doi.org/10.18494/SAM.2020.2821
Published: July 31, 2020

Equivalent Circuit Model for MEMS Vibrational Energy Harvester Compatible with Sinusoidal and Nonsinusoidal Vibrations [PDF]

Hiroaki Honma, Yukiya Tohyama, Sho Ikeno, and Hiroshi Toshiyoshi

(Received February 3, 2020; Accepted March 2, 2020)

Keywords: vibrational energy harvester, LTspice, electret, sinusoidal vibration, nonsinusoidal vibration

We build an equivalent Simulation Program with Integrated Circuit Emphasis (SPICE) model for a vibrational energy harvester comprising comb electrodes coated with an electret film that is used to convert the vibrational kinetic energy into electrical output power by electrostatic induction. In the assembled module, sinusoidal and nonsinusoidal vibrations are imported into the nonlinear current sources as an inertial force, and the power-generating performances are simulated. The nonsinusoidal waves observed in an actual environment (highway duct) are used as an input sample. By quantitatively comparing the simulation and experimental results, we verify the applicability of the equivalent module for various vibrations. When the device is excited by sinusoidal vibration, the maximum output power is calculated to be 71 µW at 0.044 G (1 G = 9.8 m/s2), which is close to the experimental result of the actual device, 68 µW at 0.045 G. Furthermore, when importing a nonsinusoidal vibration, the two timings at the highest generating peak are obtained in accordance with the moment of resonance, and the amplitudes are experimentally and analytically obtained to be 0.80 and 0.63 V, respectively.

Corresponding author: Hiroaki Honma


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Hiroaki Honma, Yukiya Tohyama, Sho Ikeno, and Hiroshi Toshiyoshi, Equivalent Circuit Model for MEMS Vibrational Energy Harvester Compatible with Sinusoidal and Nonsinusoidal Vibrations, Sens. Mater., Vol. 32, No. 7, 2020, p. 2475-2492.



Forthcoming Regular Issues


Forthcoming Special Issues

Special Issue on Advanced Materials on Electronic and Mechanical Devices and their Application on Sensors (5)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)


Special Issue on Advances in Shape Memory Materials
Guest editor, Ryosuke Matsui (Aichi Institute of Technology) and Hiroyuki Miki (Tohoku University)


Special Issue on Perceptual Deep Learning in Computer Vision and its Application
Guest editor, Chih-Hsien Hsia (National Ilan University)


Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (3)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website


Special Issue on Sensing Technologies and Their Applications (1)
Guest editor, Rey-Chue Hwang (I-Shou University)
Call for paper


Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper


Copyright(C) MYU K.K. All Rights Reserved.