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 Three methods of multivariate data analysis (MVAD), principal component analysis 
(PCA), soft independent modeling of class analogy (SIMCA) and partial least squares 
discriminating analysis (PLS-DA), were used for processing data from a multifrequency 
large-amplitude pulse electronic tongue (MLAP-ET) in this paper.  The dry red wine 
samples from the same company, produced by the same type of grape from the same 
vineyard, but with different vintages were studied using MLAP-ET.  The results showed 
that these three methods were all effective for the data treatment of MLAP-ET to assess 
the vintage of red wine samples but differ in their discriminating ability.  PLS-DA had 
the best classification property and was most suitable for processing the data from 
MLAP-ET.

1.	 Introduction

 Although the traditional measurement technique in the food industry can be used to 
determine a specific parameter such as the conductivity, viscosity, pH or concentration 
of one component accurately, it has two obviously drawbacks: (i) one or several specific 
parameters cannot represent the integral quality of a complex food sample; for example, 
conductivity can only display the character of solutions’ resistance and pH can only 
reveal the content of solutions’ dissociated protons; (ii) generally, one instrument can 
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only give a specific parameter of the solution; thus, numerous instruments are needed for 
the evaluation of one system.
 With the development of computer technology, multivariate data analysis (MVDA) 
has progressed considerably in the last two decades.  A kind of analysis technique based 
on MVDA has emerged, in which lots of information variables with low selectivity, 
and partial overlapping are collected and processed.  These analysis techniques were 
effectively applied for evaluating the integral character of products in the food industry, 
instead of one or several specific parameters of the samples.  One of the available 
analysis techniques based on MVDA is called electronic tongue analysis, which has 
attracted great interest among researchers in recent years.  The electronic tongue is a 
multisensor system, which consists of a number of low-selectivity sensors and uses 
advanced mathematical procedures for signal processing based on pattern recognition 
(PARC) and/or multivariate analysis [artificial neural networks (ANNs), principal 
component analysis (PCA), etc.].(1)  It was a very good analysis tool for evaluating 
samples qualitatively and could replace the expert panelist for evaluating the quality 
of products due to the high cost of hiring expert panelists.  It could also be used for 
quantitative analysis, i.e., for predicting the concentrations of compounds in the samples 
in some specific cases.
 Recently, several kinds of electronic tongue have been developed.  These devices 
could be classified into three types on the basis of the different electrochemical 
measurement techniques, namely, potentiometry, impedance spectroscopy and 
voltammetry.  A device based on potential, called taste sensor, was first presented by 
Toko.(2)  It was composed of several kinds of lipid/PVC membranes for transforming the 
taste quality information, such as sweetness, bitterness, sourness, saltiness, or umami 
into an electric signal.  Different types of food such as soy sauce, beer, coffee and 
mineral water were investigated using the taste sensor.  Not only the differences in food 
type were identified but also the taste interactions, such as the suppression effect, were 
detected.(3–7)  Another type of potential electronic tongue was presented by Legin,(8) which 
was configured by using several nonspecific sensors based on chalcogenide glasses 
as transducers.  It has been used for the discrimination of various foodstuffs and the 
analysis of some specific ions or species in solutions.(9–12)  The second kind of electronic 
tongue based on impedance spectroscopy was first described by Riul, in which the 
sensors were constructed using supramolecular thin films of conducting polymers with a 
lipid-like material that were analyzed by impedance spectroscopy. This kind of electronic 
tongue could distinguish different brands of beverages and detect the low levels of taste, 
inorganic contamination in water and the suppression of the sense of taste.(13–15)  The 
third kind of electronic tongue based on voltammetry, was first designed by Winquist.(16)  
It comprised several metallic electrodes (platinum, gold, palladium, iridium, rhenium 
and rhodium) as working electrodes, an Ag/AgCl reference electrode and a stainless- 
steel electrode as a counter electrode for standard three-electrode systems. It has been 
successfully used to analyze milk, tea, juice, drinking water and mold growth in liquid 
media.(17–20)

 Among the three types of devices mentioned above, the voltammetric electronic 
tongue has some special advantages, such as very high sensitivity, versatility, simplicity 
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and robustness and it has been extensively used in analytical chemistry.  Recently, we 
have reported a novel electrochemical method: multifrequency large-amplitude pulse 
voltammetry (MLAPV) with three different frequency segments, 1 Hz, 10 Hz and 100 
Hz, which was very useful in the voltammetric electronic tongue for discriminating 
samples. A novel voltammetric electronic tongue based on this MLAPV, called the 
multifrequency large-amplitude pulse electronic tongue (MLAP-ET), was also developed 
and it displayed excellent ability in the discrimination of six different Chinese liquors and 
seven Chinese Longjing teas.  The results showed that MLAPV had a better classification 
property than commonly used large-amplitude voltammetry (LAPV).(21)

 To increase the selectivity and sensitivity of the discriminating process, the data 
should be processed reasonably.  As extended work on our electronic tongue based 
on MLAPV, we examined the effect of the data processing method on discriminating 
ability.  In the present study, 147 red wine samples from the same factory, with the same 
typical grapes and the same vineyards, but from different vintages were studied using 
the MLAP-ET.  Three kinds of MVAD, i.e., principal component analysis (PCA), soft 
independent modeling of class analogy (SIMCA) and partial least squares discriminating 
analysis (PLS-DA), were used for data treatment.  PCA was used for reduction of the 
data and displaying the classification property of red wine samples using the MLAP-ET 
in the first step.  SIMCA and PLS-DA were used for studying which method was more 
suitable for MLAP-ET in pattern recognition.  The result showed that MLAP-ET could 
discriminate red wine samples with different vintages well by PCA, and that PLS-DA 
was more suitable for MLAP-ET to evaluate the age of red wine than SIMCA.

2.	 Materials	and	Methods

2.1 Experimental setup
 Figure 1 shows the voltammetric electronic tongue (MLAP-ET) used in the 
experiments, which was described previously.(21)  It consisted of three different metallic 

Fig. 1.    Setup of the voltammetric electronic tongue.
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disc electrodes (gold, silver, and titanium) as working electrodes, an Ag/AgCl electrode, 
a reference electrode (saturated KCl, diameter 2 mm), and a platinum counter electrode 
with a length of 5 mm and a diameter of 1 mm for standard three-electrode systems.  The 
metal wire that served as working electrodes had a diameter of 2 mm and a purity of 
99.9%.  All the electrodes were made by Tianjing Aida Co. Ltd., China.  A device called 
the “multifrequency large-amplitude pulse scanner (MLAPS)” (built at the lab of Sensory 
Science Zhejiang Gongshang University) was a potentiostat with six channels, which 
was controlled by a personal computer (PC).  It could make the potential pulses/steps on 
the working electrodes and enable the working electrodes to work consecutively one at 
a time in three-electrode configurations, which were controlled by a relay in MLAPS.  
The PC was used to set and control the potential pulses, and measure and store current 
responses.  A thermostat water bath was also applied to make the cell at a constant 
temperature.

2.2 Treatment of samples
 147 bottles of red wine samples (see Table 1) was provided by Huaxia Great Wall Co. 
Ltd., which were stored in the cellar of the company in bottles.  All the red wine samples 
were of the same type (dry).  They were all produced from the same type of grape (cabernet 
sauvignon) and from the same vineyard.  The only difference lies in their vintage.
 Eighty milliliters of each sample was used for analysis using the electronic tongue 
at room temperature (approximately 22°C) in random.  Each sample was analyzed three 
times, and then we averaged the data to produce one point in the PCA score plot.

2.3 Voltammetric procedure and data extraction method
 The applied potential waveform was an MLAPV one, which was described in the 
previously paper.(21)  It consisted of three segments with frequencies of 1 Hz, 10 Hz and 
100 Hz.  The waveform of each segment of the LAPV waveform had the maximal value 
at 1.0 V and the minimal value at –1.0 V.  The amplitude of each pulse was 0.1 V.  A step 
of 0 V was inserted immediately before and after the pulse.
 Four points of each cycle were collected, which were related to the concentration and 
diffusion coefficients of the charged and electroactive compounds in the solution (see Fig. 2).

Table 1
Red wine samples used in the treatments.

Samples Brand Type Grape typical Vintage Amount (bottle)
S1 Great wall Dry Cabernet sauvignon 1993 25
S2 Great wall Dry Cabernet sauvignon 1996 25
S3 Great wall Dry Cabernet sauvignon 2001 26
S4 Great wall Dry Cabernet sauvignon 2003 26
S5 Great wall Dry Cabernet sauvignon 2004 24
S6 Great wall Dry Cabernet sauvignon 2005 21
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2.4 Data processing method
2.4.1 Principal component analysis
 Principal component analysis (PCA) is a popular and useful MVDA method for the  
analysis of experimental data.(1,4,18)  It can decompose the experimental data matrix into 
latent variables and explain the variables in data using the loading plot from the loading 
vectors and the score plot from the score vectors.  The loading plot could elucidate the 
relationships between the original variables and their influence on the system.  The score 
plot displays the relationships between the samples of the experiments, and could be 
used for grouping and classifying the observations.

2.4.2 Soft independent modeling of class analogy
 Soft independent modeling of class analogy (SIMCA) is another kind of MAVD, 
which is popularly applied in pattern recognition.(1,19,22–23)  It builds a class model on the 
basis of the principal component analysis of each separated category.  Some parameters 
would be obtained from the model of separated class samples, i.e., the number of 
significant components “A”, the mean standard deviation of each class “Sc” and the 
degree of freedom of each class, among others.  These parameters are then used to 
classify external samples (the prediction set) on the basis of the same variables.  If 
appropriate, the model can then be used to classify unknown samples.

2.4.3 Partial least squares discriminating analysis
 Partial least squares discriminating analysis (PLS-DA) is a supervised pattern 
recognition method based on partial least squares (PLS).  Y-variables could be set for 
different groups.  How many groups respond to how many Y-variables.  The Y-variables 

Fig. 2. Method of extracting data from the original data of one segment of one working electrode.
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that respond to the samples with the same group are valued 1, otherwise they are 
valued 0.  PLS-DA builds the model by relating the variations in one or several group 
variables (Y-variables) to sample variables (X-variables) based on PLS.  Then it uses the 
X-variables of the unknown samples to predict the group variables of Y-variables.  The 
samples with the group of Y-variables larger than 0.5 and a deviation that does not cross 
the 0.5 line are predicted to be in this group.  This method works particularly well when 
the various X-variables express common information, i.e., when there is a large amount 
of correlation, or even collinearity due to its being based on PLS.(1,24–25)

 The above three methods were performed using SPSS11.0 and the unscrambler 9.1.

3.	 Results

3.1 Performance	of	PCA
 The data from the MLAP-ET was treated as described in the previous paper.(21)  
The MLAPV that was applied in MLAP-ET was a useful electrochemical method for 
the electronic tongue and it made one individual working electrode display different 
classification properties for samples at different frequency segments.  The data of each 
of the three MLAPV frequency segments from one working electrode was processed 
by PCA, and the score plot of each frequency segment of MLAPV from one working 
electrode would show different sample discrimination abilities.  Then the data of one 
frequency segment of MLAPV from one working electrode, which showed the best 
classification property, were picked out and merged as the data of the sensor array 
of MLAP-ET.  In the present work, the score plot of the silver working electrode 
exhibited the best discriminating ability from the 100 Hz frequency segment of all 
three frequency segments of MLAPV, while the score plots of the titanium working 
electrode and gold working electrode showed the best classification property from the 
1 Hz frequency segment and 10 Hz frequency segment of their own three frequency 
segments of MLAPV, respectively.  As the data treatment of MLAPV, the data of the 100 
Hz frequency segment from the silver working electrode, the 1 Hz frequency segment 
from the titanium working electrode and the 10 Hz frequency segment from the gold 
working electrode were merged as the data from the sensor array of MLAP-ET for PCA 
processing (see Figs. 3 and 4). Also, the other choices of the combination of the data 
from each frequency segment were tried.  The score plot from the merged data of the 
above frequency segments of individual working electrodes had the best discriminating 
ability.
 Figures 3 and 4 showed the final PCA results from the data of the sensor array of 
MLAP-ET.  The first three components contained 78.9% of all the information.  It can be 
seen that the score plot of PC1 and PC2 could not discriminate samples with six different 
kinds of vintage well.  The sample clusters with vintages of 1993, 2001, 2003 and 2005 
overlapped each other.  However, the red wine samples were classified well in the score 
plot of PC1 and PC3.  They were well separated according to the different vintages. Only 
the sample with a vintage of 2005 and the sample with a vintage of 2001 overlapped with 
the cluster with a vintage of 2003.
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Fig. 3.    Scope plot from MLAP-ET by PC1 vs PC2.

Fig. 4.    Score plot from MLAP-ET by PC1 vs PC3.
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3.2 Performance of SIMCA
 The PCA results showed that MLAP-ET can classify red wine samples according 
to their vintage.  PCA was a simple unsupervised pattern recognition method and it is 
popularly used because it can be used when samples are few.  However, supervised 
pattern recognition methods were needed when the electronic tongue was applied in 
industry.  SIMCA as a supervised recognition method was used.  Also, the data of each 
sample obtained using MLAP-ET was the same as that obtained by PCA.
 In the SIMCA procedure, the data of five samples of every vintage were selected at 
random as the test samples for classification.  Thus, 20 samples with vintages of 1993 
and 1996, 21 samples with vintages of 2001 and 2003, 19 samples with a vintage of 
2004 and 16 samples with a vintage of 2005 remained for building the SIMCA models. 
Seven components for the model of the samples with the vintages of 1993 and 1996, 
5 components for the model of the samples with the vintages of 2001 and 2005, 4 
components for the model of the samples with the vintages of 2003 and 6 components 
for the model of the samples with the vintage of 2004 were chosen, to make the total 
explained variance more than 85%.  The results of the classification of test samples 
are shown in Table 2.  Two samples with the vintage of 2003 and one sample with the 
vintage of 2001 were incorrectly classified to be the model of the samples of 2001 and 
the model of the samples of 2003, respectively.  Compared with those in Fig. 4, the 
samples with the vintage of 2001 overlapped with the samples of the vintage of 2003.  
However, the SIMCA method discriminated the samples with the vintage of 2005 well, 
while one sample with the vintage of 2005 was overlapped with the cluster with the 
vintage of 2003.

3.3 Performance of PLS-DA
 PLS-DA as another supervised pattern recognition method was also used for the 
classification of samples with different vintages.  The x-variables of the samples 
for building models and predicting groups were the same as those for SIMCA.  Six 
y-variables were created for the presented six groups with different vintages, which were 
labeled 1993, 1996, 2001, 2003, 2004 and 2005, respectively.  The y-variables of the 
samples with the same vintage were assigned 1, otherwise they were assigned 0.

Table 2
Results of SIMCA in the significance limited of 5%.

Name   Vintage of the predicted samples
of models 1993 1996 2001 2003 2004 2005
1993 *****
1996  *****
2001   ***    *        **
2003           *         ***
2004     *****
2005      *****

“*” represents the number of samples that the model discriminated.
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 Ten components of the PLS model were chosen to make the total explained variance 
more than 85%.  The results showed that all the samples with different vintages were 
effectively classified by PLS-DA (Table 3 and Fig. 5).  It can be seen that the predicted 
samples with the vintages of 1993, 1996, 2004 and 2005 were well classified by PLS-
DA, whose deviations were less than 0.1 (see Table 3 and Figs. 5(a), 5(b), 5(e), and 5(f)).  
The samples with the vintages of 2001 and 2003 are less effectively classified by PLS-
DA due to its relatively large deviation (see Figs. 5(c) and 5(d) and Table 3).  However, 
they were still discriminated by PLS-DA, while two samples with the vintage of 2003 
and one sample with the vintage of 2001 were not successfully classified by SIMCA.

4.	 Discussion

 In this work, 147 bottles of red wine with vintage differences, were studied using 
MLAP-ET based on MLAPV.  The PCA showed that the sensor array data were merged 
with the data of the 100 Hz frequency segment from the silver working electrode, the 
1 Hz frequency segment from the titanium working electrode, and the 10 Hz frequency 
segment from gold working electrode was the best for classifying the samples according 
to vintage (see Fig. 4).  This result verified that MLAPV was a useful electrochemical 
method for the voltammetric electronic tongue, and different working electrodes needed 
specific frequency segments for the analysis of samples.
 Three MAVD techniques, i.e., PCA, SIMCA and PLS-DA, were used for processing 
the data from MLAP-ET.  PCA is an unsupervised pattern recognition method.  It is 
very popularly used for processing the data of the electronic tongue,(1,4,18) since it can 
give good results when there is a spot of samples with a large number of variables and 
can easily discriminate the samples with different characters in 2 D or 3 D plots with 
the help of human eyes.  It can be seen from Fig. 4 that all the samples can be separated 
by the score plot of PC1 vs PC3 from PCA.  However, the clusters of the samples with 
the vintages of 1996, 2001, 2003 and 2005 were close to each other, and one sample 
with the vintage of 2005 and one sample with the vintage of 2001 were both overlapped 

Vintage of the       PLS-DA
predicted samples Discrimination ratio Mean of predicted Mean of deviation
1993 100% 0.93 (0) 0.08 (0.09)
1996 100% 0.98 (0) 0.05 (0.04)
2001 100% 0.78 (0.03) 0.14 (0.15)
2003 100% 0.84 (0.05) 0.13(0.14)
2004 100% 0.96 (0.02) 0.07 (0.07)
2005 100% 0.97 (0) 0.09 (0.08)

Table 3
Result of PLS-DA.

The number in the brackets represents the predicted Y-variable responding to the samples that did not belong to 
this group.
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with the sample with the vintage of 2003.  The reason lies in the fact that the first three 
components only contain 78% of all the data information.  PCA had some drawback that 
it could not classify samples well when the first three components had less than 80% of 
the information and the mean of the specific component usually was not clear.  Maybe 
the score plot would be better when the first three components contain more information 
after some advanced data treatment skills are incorporated in PCA.
 Two supervised pattern recognition methods, SIMCA and PLS-DA, were used for 
further data processing.  SIMCA was the first class modeling technique introduced in 
chemistry and is commonly used for classifying samples.(1,19,22–23)  PLS-DA was another 
supervised pattern recognition method that extended from PLS, which has been rapidly 
developed in recent years.(24,25)  The results of two methods showed that the samples with 
the vintages of 2001 and 2003 could not be easily classified.  These results were similar 
to those in Fig. 4; the cluster of the samples with the vintages of 2001 and 2003 had a 
partial overlap and a large dispersion.  The discrimination ratio of PLS-DA (100%) is 
higher than that of SIMCA (90%).  In the SIMCA method, two samples with the vintage 
of 2003 and one sample with the vintage of 2001 were not classified correctly.  All 

Fig. 5. Plots from PLS-DA of predicted Y of various samples.  (a) Predicted Y of the samples 
with the vintage of 1993; (b) predicted Y of the samples with the vintage of 1996; (c) predicted Y 
of the samples with the vintage of 2001; (d) predicted Y of the samples with the vintage of 2003; 
(e) predicted Y of the samples with the vintage of 2004; (f) Predicted Y of the samples with the 
vintage of 2005.
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the results showed that PLS-DA was more effective here.  The reason may be that the 
applied waveform MLAPV was designed to promote the interaction of potential pulses 
with each other to produce new information, and the data derived from MLAPV which 
changed the length of the large-amplitude pulse voltammetry (LAPV) signal contain a lot 
of nonlinear information.  It is well known that PLS is more effective for nonlinear data 
processing than PCA;(24,25) thus, PLS-DA pattern recognition based on PLS shows a better 
discriminating ability than SIMCA, which is based on PCA.  The analysis of the vintage 
of red wine herein showed that PLS-DA was more suitable than SIMCA for MLAP-ET 
data processing.  Further work is needed to extend this method to the evaluation of more 
samples, and investigate other nonlinear data processing methods for MLAP-ET.
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