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	 Unmanned aerial vehicles (UAVs) have been used to survey forests for decades. To monitor 
post-forest operation effects such as the surface deformation of forest soils (e.g., soil erosion and 
deposition), the alignment of 3D surface models using ground control points (GCPs) by 
georeferencing is necessary. However, the GCP network optimization for surveying forests has 
not been clearly established. We installed 29 GCPs on tree stumps in a post-timber harvesting 
site to spatially correct UAV survey results, for which real-time kinematics data were 
unavailable. The GCPs for georeferencing were randomly selected from 13 validation sets for 
each of the three trials in this study; the GCP and checkpoint root mean square errors (RMSEs) 
were used for determining the georeferencing results. Even if the number of GCPs increased, the 
GCP RMSE did not decrease; the checkpoint RMSE decreased by 2.03 cm. The 3D surface 
model alignment using 6 and 26 GCPs did not show a significant difference in alignment error 
(3.78 and 2.96 cm, respectively). Our results reveal that GCP RMSE does not affect the alignment 
error; therefore, we suggest using at least 6 GCPs for the precise alignment of 3D surface models 
while utilizing the same GCPs for aligning pre- and post-3D surface models.

1.	 Introduction

	 Forest operations can cause various disturbances to the forest environment. Heavy machines, 
which are essential for tree logging, can cause adverse environmental effects due to the rutting 
of forest soil.(1–4) Sustainable forest management requires continuous monitoring, especially 
after implementing forestry operations. For continuous monitoring, it is essential to conduct 
direct surveys (for detailed investigations and measurements). However, surveying forests with 
human effort is difficult because of the challenging terrain and limited available facilities in 
such areas.
	 To reduce the labor intensity in surveying forests, a 2D-sensor-based unmanned aerial 
vehicle (UAV) system was implemented in various forestry fields owing to their cost efficiency 
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when compared with 3D scanning sensors, such as LiDAR. Several attempts have also been 
made to introduce novel technologies for monitoring post-timber harvesting effects such as the 
elevation changes caused by the surface deformation of forest soils (e.g., soil erosion and 
deposition).(5,6) To detect the changes in soil surfaces, a few recent studies used UAV-derived 3D 
surface models to identify the wheel tracks of forestry machines (left behind after timber 
harvesting).(7,8) In this study, we collected approximately 200 2D images for monthly UAV 
surveys of the slope using UAV photogrammetry technology; a 3D surface model of the post-
timber harvesting site was created using the structure from motion (SfM) photogrammetry 
algorithm, and the soil changes in the target site were also observed.(8) Moreover, ground control 
points (GCPs) were used to align the monthly point cloud data (PCD) acquired through 
georeferencing and calculate the elevation changes (e.g., erosion and deposition) in the soil 
surface.
	 The optimization of GCP installation and utilization has been studied in various industries to 
ensure accurate surveying and precise ground truth data.(9–11) A recent study carried out multiple 
simulations based on UAV photogrammetry to determine the optimization of GCP utilization; 
the study configured 24 GCP networks to confirm the optimal method of GCP use.(11) Although 
extensive studies have been conducted in various related fields, there is a lack of studies on the 
optimal installation and utilization of GCP methods in mountainous and forested terrains.
	 To monitor the topographical changes at the target site, enabling the continuous acquisition of 
3D data is important; notably, in such cases, the technology used for data acquisition and the 
alignment of the acquired 3D data are the key factors. Therefore, in this study, we monitored the 
impact of post-timber harvesting operations on the forest environment using UAVs to determine 
the optimal number of GCPs required to effectively monitor an area. First, we used GCPs to 
implement a nonrestorative extraction method and obtained the spatial root mean square error 
(RMSE) for each number of GCPs utilized to confirm the optimal number. Then, after carrying 
out geometric correction by applying the same GCP used for the verification of the time-lapse 
data, the overlapping state of both PCD points was examined as the distance of the GCP 
identified in the orthomosaics to confirm the overlap accuracy according to the spatial RMSE.

2.	 Data, Materials, and Methods

2.1	 Site description

	 We selected the forest area of Kangwon National University, Gangwon Province, Republic of 
Korea (37°46′34.4″ N, 127°49′41.1″ E) as our study area (Fig. 1). Approximately 3 ha of timber 
was harvested at the site in March 2022. The site has an altitude of 508–628 m above sea level, 
with an average slope of 47%. After clearcutting, stumps and logging debris remained on the 
slopes of the area, with the debris being arranged horizontally downslope. A real-time kinematic 
(RTK) system was not available for this region because of the mountainous site location, as the 
signal from the base station could not be received at the site. However, the GPS signals from the 
site could be recorded using satellites; therefore, we surveyed the area using a UAV.
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2.2	 UAV survey and field data collection

	 In this study, surveys were conducted using UAVs equipped with a global navigation satellite 
system (GNSS). The UAV survey was performed with DJI Matrice 300 (Da-Jiang Innovation, 
Shenzhen, China) as the platform and DJI Zenmuse H20T (Da-Jiang Innovation, Shenzhen, 
China) as the sensor. The DJI Matrice 300 weighed approximately 7 kg and provided with both 
GPS and RTK modes. The maximum flight duration of the DJI Matrice 300 attached with the 
DJI Zenmuse H20T was about 43 min. The DJI Zenmuse H20T weighed 0.82 kg and provided 
an optical camera with a resolution of 12 megapixels.
	 To georeference the 3D surface models derived from UAV surveys, a 40 × 40 cm2 Fomex 
texture plate of 29 GCP markers was prepared for the preprocessing of the study site, where the 
RTK mode is unavailable. We selected stumps, which are undeforming objects for monitoring 
the forest field, to install GCP markers. During the GCP installation, we considered 1 GCP per 
30 × 30 m2 to cover approximately 3 ha of the total study site.
	 Vertically parallel flights were performed at heights of 100 and 140 m [Fig. 2(a)] for every 
monthly UAV survey with the GPS mode because of the unavailability of the RTK mode. The 
flight speed was set at 5 m/s, optimized for the battery duration of the DJI Matrice 300 RTK 
system. The overlaps were set to 90 and 80% on the front and back sides, respectively. The 
margins were set at 20 m to ensure the high quality of the PCD during processing. The 
coordinates of the GCP points were collected to validate the georeferencing results. On the other 
hand, field survey was conducted with Trimble R12i GNSSs (Trimble, Westmister, USA). The 
spatial coordinates of GCPs (with the least coordinate error of 3 cm) were collected using GNSS 
from the center point of each GCP marker [Fig. 2(b)].

2.3	 Photogrammetric process

	 The photogrammetric process was performed using Agisoft Metashape ver.1.7.4 (Agisoft 
LLC., Petersburg, Russia) (Table 1). Using the SfM algorithm, we first simulated sparse clouds 

Fig. 1.	 (Color online) Location and panoramic view of the timber-harvesting area of Kangwon National University 
considered in Kim et al.(8) and this study.
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from 235 2D images captured in July 2022 and 230 2D images captured in September 2022. By 
calculating the coordinates and correlations of the 2D images, generally referred to as PCD 
points, we simulated dense clouds from the data of sparse clouds. The PCD points were 
subsequently generated into digital surface models (DSMs) and orthomosaics by calculating the 
height of each PCD point and the color of each pixel point from the 2D images.

Fig. 2.	 (Color online) Illustration of the surveying method carried out in this study using UAVs and field 
references, which was the same as the method used by Kim et al.:(8) (a) shows a vertically parallel flight for monthly 
UAV surveys and (b) shows the GCP–GNSS survey carried out using GCPs installed on tree stumps in the study 
area.

Table 1
Parameters used in each process to generate 3D data.
Process Parameter Setting

Align Photos

2D image input 140 m + 100 m
Accuracy Highest

Reference preselection On
Key-point limit 40000
Tie-point limit 4000

Build Dense Cloud Quality Ultrahigh
Depth filtering Aggressive

Build DSM
Projection WSG 84 (EPSG: 4326)

Source data Dense cloud
Point classes All

Build Orthomosaic Projection WSG 84 (EPSG: 4326)
Surface DEM

*Abbreviations: digital surface model (DSM); World Geodetic System 1984 (WSG 84), European Petroleum Survey 
Group (EPSG), digital elevation model (DEM)

(a) (b)
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2.4	 Georeferencing by sampling without replacing GCPs

	 The number of GCPs required for optimum 3D surface model alignment was validated using 
two different methods: (1) random GCP selection for georeferencing and (2) the calculation of 
alignment error. The optimization results of the GCP configuration were compared on the basis 
of the number of GCPs utilized for data collection. In related studies, the number of validated 
GCPs was not unified.(11,12) However, the checkpoints and validated GCPs were assessed on the 
basis of spatial errors, which were calculated using the RMSEs of the XYZ coordinates.(11) Thus, 
for analyzing the probabilistic equity, we randomly sampled 4–28 GCPs in two multiples and 
calculated the GCP and checkpoint RMSEs in three different trials. To calculate the spatial 
RMSEs, the total coordinates of the 3D surface model GCPs were compared with those of the 
GNSS-GCPs (i.e., ground truth data) using the XYZ coordinate data. The equation for calculating 
the RMSEs of the 3D surface model GCPs from the ground truth is 

	 ( )2 2 2
1

1 ,n
xyz i i ii

RMSE X Y Z
n =

= ∑ ∆ + ∆ + ∆∑ 	 (1)

where

	 ΔXi = residual of ith value for X-axis,
	 ΔYi = residual of ith value for Y-axis,
	 ΔZi = residual of ith value for Z-axis,
	 n = number of control points.

	 The purpose of georeferencing was to align the 3D surface model as precisely as possible to 
detect the surface deformations caused by the events that occurred in the region. Notably, the 
georeferencing process in multiple 3D surface models can automatically align multiple DSMs 
from different periods. However, determining the GCP center points in PCD is impossible with 
the automatic method. Therefore, the precision of the alignment was assessed by manually 
calculating the spatial distance between the GCP center points of the aligned orthomosaics in 
ArcGIS Pro.

3.	 Results and Discussion

	 The GCPs used for georeferencing were selected in two multiples (from 4 to 28); thus, the 
GCP networks were classified into 13 validation sets. The GCPs used for georeferencing each 
validation set were randomly selected by confirming the center of the GCP markers in the PCD 
acquired in July 2022 (Fig. 3). Because of vegetation growth, a few GCPs (e.g., GCP-1 and GCP-
4) could not be identified clearly in the September 2022 orthomosaic. Thus, in the georeferencing 
of the September data, we excluded GCP-1 and GCP-4 for georeferencing the 3D surface 
models.
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	 The georeferencing RMSE of each validation set was used to calculate the average RMSE 
(Fig. 4). Despite the increasing number of GCPs, the GCP RMSEs among all the GCP network 
designs did not vary significantly. In contrast, the checkpoint RMSE decreased by 2.03 cm until 
26 GCPs were used. Moreover, the two validation sets confirmed precise georeferenced GCP 
networks by subtracting the GCP RMSE from the checkpoint RMSE. The lowest GCP and 
checkpoint RMSEs of all the GCP network designs were 6 GCP (10.69 and 14.52 cm, 
respectively), 14 GCP (11.21 and 15.24 cm, respectively), 16 GCP (11.62 and 14.83 cm, 
respectively), 20 GCP (12.09 and 16.53 cm, respectively), and 26 GCP (12.62 and 14.83 cm, 
respectively).

Fig. 3.	 (Color online) GCP network designs from random GCP selection. The GCPs (4–28) were selected on each 
GCP network by multiples of 2 in three different trials.
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	 Despite the increase in the number of GCPs, we noted no reduction in GCP RMSE compared 
with the results of related GCP studies.(11–13) Although the results were shown as RMS in 
Hastaoglu et al.,(12) a comparison of checkpoint RMS data obtained for all-network design (46 
GCPs) and sparse network design (32 GCPs) showed differences by an average of 2.87 cm when 
additional 14 GCPs were used from the sparse network design. In the comparison between the 
4-GCP group and the 10-GCP or more group, which was presented by Zhang et al.,(13) the total 
horizontal error was reduced by an average of 30.63 cm. In particular, Villanueva and Blanco(11) 
investigated the optimization of GCP networks with various patterns (e.g., clumped – center, 
distributed – edge, clumped – edge, and distributed – edge and center), which was different from 
our study. The GCP RMSE of the study decreased significantly (by 1.6 m) with increasing 

Fig. 4.	 (Color online) GCP and checkpoint RMSEs in the three validation sets considered in this study.

(a)

(b)

(c)
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number of GCPs. Moreover, Villanueva and Blanco(11) revealed that the GCP RMSE results 
showed a significant reduction (by approximately 20 cm) from GCP 4 to GCP 24 of the XY 
coordinates, which is comparably similar to our study. However, the GCP RMSEs of XY and Z 
may not be perfectly comparable to those in our study because we considered the total RMSE of 
the XYZ coordinates. Thus, we compared the total GCP RMSE magnitude and noted a reduction 
of approximately 4 m. This result indicated that the DEM resolution of the comparison study was 
10 cm, which was higher than that considered in our study (which is approximately 2.7 cm), and 
that the center points in our study may have been confirmed more precisely than the comparison 
site. Furthermore, the DSM resolution acquired for our study was significantly lower than that in 
the compared study by approximately 6.3 cm, which may have also affected the insignificant 
differences in GCP RMSEs in the 13 validation sets (Fig. 4). However, the checkpoint RMSE in 
our study showed a decreasing trend, similar to that in the compared studies.
	 Furthermore, we generated orthomosaics from all GCP validation sets for June and 
September 2022 by comparing the lowest GCP-RMSE of each GCP used for georeferencing 
(Table 2). The precision of the alignment was assessed using the orthomosaics for June and 
September 2022 (Table 2). The average alignment distances of the validation sets using 6 GCPs 
(VS-6) and 26 GCPs (VS-26) were calculated as 3.78 and 2.96 cm, respectively; the GCP-26 set 
was confirmed to be the most precisely aligned PCD (based on the total validation process).
	 Georeferencing is a key process that allows the alignment of different 3D surface models for 
effective monitoring;(14) the total alignment error in the study was 1.28–3.33 cm in the 
construction field. The lowest alignment errors in the XY and Z coordinates in an artificial 
mound, considered an idealized field condition, were calculated to be in the ranges of 1.31–3.39 
cm for the XY error and 0.94–1.8 for the Z error (when using GCPs on the alignment).(15) A 
recent study that monitored timber-harvesting sites utilized 29 GCPs for georeferencing to align 
four different PCD points;(8) the results indicated that the alignment error for models developed 
for June and September 2022 was 3 cm. This error may be compared with that calculated as 2.96 

Table 2
RMSE and alignment error estimated from the confirmed validation set of the lowest average GCP-checkpoint 
RMSE.

Validation set-3 
using 6 GCPs

Validation set-2 
using 14 GCPs

Validation set-2 
using 16 GCPs

Validation set-2 
using 20 GCPs

Validation set-3 
using 26 GCPs

GCPs used for survey 9, 11, 14, 
20, 21, 27

3, 4, 5, 6, 7, 9, 
12, 13, 14, 18, 
20, 22, 24, 25

3, 5, 7, 9, 10, 12, 
13, 14, 15, 17, 19, 
21, 23, 24, 28, 29

1, 4, 7, 8, 10, 11, 
12, 14, 16, 17, 
18, 19, 21, 22, 
23, 24, 25, 26, 

28, 29

1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11, 12, 
14, 15, 16, 18, 
19, 20, 21, 22, 
23, 24, 25, 27, 

28, 29
Average GCP-checkpoint 
RMSE for June and 
September (cm)

4.5 2.94 3.52 2.82 1.02

Standard deviation of 
GCP-checkpoint for June 
and September (cm)

1.01 1.509 0.91 1.44 1.07

Average alignment error 
(cm) 3.78 3.85 3.74 3.63 2.96
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cm for VS-26 in our study [Fig. 5(a)]. Our alignment error calculated for 3rd VS-26 was the most 
accurate validation set, with the error being less than 4 cm, according to related studies.(8,15) 
Moreover, the alignment error of the VS-6 was also acceptable compared with that of the VS-26 
(Fig. 5). This result indicates that reducing the number of GCPs used for georeferencing may not 
negatively affect the alignment results when the post-3D surface model is generated from the 
same GCPs that were utilized in the pre-3D surface model, which was the approach adopted in 
this study.
	 Furthermore, we determined the optimal number of GCPs required for aligning the 3D 
surface models. A comparison of the average GCP-checkpoint RMSEs of the VS-6 and VS-26 
showed a strong relationship with respect to the alignment error; the GCP-checkpoint RMSE of 
the VS-26 was approximately 3.48 cm lower than that of the VS-6 (Table 2). The decreasing gap 
between the GCP and checkpoint RMSEs also decreased the alignment error by 0.82 cm with 
respect to the average GCP-checkpoint RMSE. However, the standard deviation of the VS-6 and 
VS-26 validation sets was approximately 1 cm, indicating an insignificant difference. 
Furthermore, we confirmed that the VS-14, VS-16, and VS-20 sets had sufficiently small (<4 
cm) alignment errors in the validation results (Table 2). Moreover, no significant difference was 
confirmed in the alignment performance (e.g., average GCP-checkpoint RMSE, standard 
deviation, and alignment error) of five cases (e.g., VS-6, VS-14, VS-16, VS-20, and VS-26) 
(Table 2). These results indicated no significant correlation between georeferencing and the 

Fig. 5.	 (Color online) Comparison of GCPs and checkpoints in average RMSE and alignment error: (a) total RMSE 
of GCPs and checkpoints; error bars represent standard deviation and (b) average GCP-checkpoint RMSE.

(a)

(b)
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number of GCPs. Another GCP-based 3D data alignment study indicated that using 6 GCPs for 
the alignment of multi-photogrammetry data at construction sites was possible; this approach is 
considered to be effective even in larger areas.(16) Thus, we conclude that the georeferencing 
method used in this study, wherein we considered the same GCPs used for collecting the PCD in 
June 2022 to collect the PCD in September 2022, could yield low alignment errors. We also 
conclude that the least alignment error can be acquired using 26 GCPs; however, similar results 
can be obtained using 6 GCPs.

4.	 Conclusions

	 The installation of GCPs in actual forest fields is not easy, as finding undeformed but sturdy 
objects is difficult. This can affect the distribution of GCPs in the field and the precision of the 
georeferencing results for the target site. To address this problem, we generated a total of 13 
validation sets in three trials through random selection and assessed the GCP RMSE for each of 
the 13 validation sets; the results did not show significant differences. The alignment error 
confirmed from the generated visual 3D surface models, which were orthomosaics, showed no 
correlation with the GCP RMSE when the same GCPs were used for surveys during two different 
periods. Notably, we conclude that the GCP georeferencing methods and analysis results of this 
study can be utilized as base data for conducting or comparing UAV surveys in forest fields for 
which RTK data were not available. We suggest the use of more than 6 GCPs for georeferencing 
and aligning 3D surface models. Furthermore, we suggest using the same GCPs for developing 
the pre- and post-3D surface models. Although the proposed method can yield precise alignment 
results, validating this method by applying it to other forest areas in future studies is important.
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