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	 As the economic center of western China, the Chengdu Chongqing Economic Zone holds a 
unique and important strategic position for China’s overall development. However, rapid 
economic growth in the region in recent years has led to an increase in the number of urban 
areas that threaten the preservation of local ecosystems. Therefore, it is crucial that long-term 
analyses and projections of habitat quality conditions in the region are conducted to ensure 
sustainable development, and the habitat quality index provides a valuable measure of the 
ecosystem health of a region. In this study, we utilized land use/land cover data of 2000–2020 to 
predict land use cover in the study area in 2040. A natural development scenario, a cultivated 
land security scenario, and an ecological priority development scenario were simulated, and the 
results were subsequently explored. Future land use projections were based on the artificial 
neural network-cellular automata model, and habitat quality details were calculated using the 
Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model. These methods 
allowed for an evaluation of the evolution of the Chengdu Chongqing Economic Zone over the 
past 20 years as well as predictions about the course of its development and habitat quality over 
the next 20 years. The results revealed the following: (1) The Chengdu Chongqing Economic 
Zone is mainly composed of cultivated land and forest land, followed by urban land and 
grassland. Between 2000 and 2020, there was a significant increase in the number of urban areas 
and a continuous decrease in cultivated land. On the basis of simulations and analyses of 
different scenarios, urban land areas are projected to increase between now and 2040. (2) In 
2000, 2010, and 2020, the average habitat quality indices of the Chengdu Chongqing Economic 
Zone were 0.6494, 0.6432, and 0.6336, respectively, indicating good habitat quality, but one that 
is in decline, particularly in the urban areas of Chengdu and Chongqing. Spatial analysis revealed 
a pattern in which the habitat quality may be described as “high at the periphery, low in the 
center.” Our findings showed that over the next 20 years, the best potential for a high-quality 
regional habitat depends on a scenario in which ecological protection is emphasized. In 2000, 
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2010, and 2020, the average habitat degradation indices were 0.0935, 0.0938, and 0.0949, 
respectively, indicating an increasing threat to the region’s habitat. This conclusion will be 
beneficial to the future urban spatial planning of the area: the government should prevent the 
disorderly expansion of cities and maintain the biodiversity of the Chengdu Chongqing 
Economic Zone. The analyses and evaluation methods used in this study can also serve as a 
valuable reference for other regions seeking to improve their habitat quality and land use.

1.	 Introduction

	 Land is the foundation and carrier of various ecosystems. The main purpose of land use/land 
cover (LULC) change research is to investigate the impact of human activities on the natural 
environment and how this impact can be further fed back into the development of human society 
and economy. These changes can cause ecological effects, such as changes in biodiversity, 
ecosystem functions, and ecological environment.(1) Habitat quality indicates the quality of the 
environmental conditions that determine the survival and reproductive capacity of organisms. 
The quality of a habitat directly affects the survival and reproduction of organisms and is a vital 
factor in maintaining ecological balance and biodiversity.(2,3) The degree of habitat quality, 
therefore, ultimately determines an ecosystem’s potential for sustainable development. Currently, 
accelerating global urbanization poses significant threats to the quality of many habitats. Hence, 
it is essential to assess changes in how land is used, identify developmental trends, and explore 
the patterns and drivers that cause changes to habitat quality. These endeavors are critical if 
sustainable land development is to be achieved in the long term.
	 Habitat quality not only reflects regional biodiversity and ecological conditions, but also 
represents the quality of human production and living conditions. In recent years, population 
growth and rapid socioeconomic development have led to an increasing demand for land and 
natural resources, resulting in their overexploitation.(4) Changes in land use patterns and 
intensity have severely damaged ecosystems, which have also led to a decline in the value of 
these natural resources. Research on the evolution of habitat quality plays an important role in 
formulating effective land and environmental protection policies.(5)

	 Theories and analyses of LULC change have continued to advance, and research has been 
accelerated by the implementation of new technologies, such as geographic information 
systems.(6,7) These tools have allowed for the evaluation of land use change features at various 
scales, including analyses of land use based on landscape patterns and comprehensive analyses 
of land use changes on a national level. Moreover, these resources have elucidated many of the 
characteristics and driving forces behind land use changes. For example, geographic detectors 
have been employed to assess the impact of factors such as precipitation, while Normalized 
Difference Vegetation Index (NDVI) has been used to explore watershed ecology.(8) Additionally, 
data on historical changes can be used to simulate future LULC scenarios using cellular 
automata, the Future Land Use Simulation (FLUS) model, and the Cellular Automata (CA) 
Markov model, which predict future urban morphology.(9) Furthermore, new statistical methods 
are continuously being integrated into land change analysis.(10) The application of these 
innovative technologies and methodologies has significantly advanced the field of LULC 
research.
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	 LULC is the main factor causing changes in habitat quality, leading several scholars to 
conduct increasingly in-depth research in this area. Methods such as landscape pattern analysis 
allow researchers to better assess the characteristics of a habitat and focus on how habitat quality 
affects animals and plants(11) as well as special ecosystems.(12) The impact of human activities on 
habitat quality must include the consideration of the value of ecosystem functions and ecological 
security. Mathematical and statistical methods can be combined to analyze changes in 
biomimetic lens quality,(13) and quantitative research based on ecological indicators can be used 
to analyze the changes in biomass caused by land use changes.(14,15) One quantitative method, 
known as the Integrated Valuation of Ecosystem Servicer and Trades (InVEST) model, can more 
accurately reflect changes in land patch use levels compared with other models. It combines the 
information and driving factors of LULC change to analyze the quality of ecological mirrors in 
specific regions.
	 The Chengdu Chongqing Economic Zone(16) serves as the economic hub of western China. 
However, in recent years, rapid economic development and substantial urban expansion in the 
region have highlighted the conflicts that arise when ecological land is confronted with 
transformation into urban areas. Therefore, conducting long-term analyses and simulating future 
outcomes are vital for promoting green, sustainable development and ensuring habitat quality. In 
this study, we investigated LULC changes in the Chengdu Chongqing Economic Zone over the 
past 20 years and analyzed the features of the region’s habitat quality during its evolution from 
2000 to 2020. Using analyses from the artificial neural network-cellular automata (ANN-CA) 
and InVEST models, we then predicted the changes and new trends in LULC and habitat quality, 
which are expected to occur by 2040 under a natural development scenario (NDS), a cultivated 
land security scenario (CLSS), and an ecological priority development scenario (EPDS). The 
purpose of analyzing changes in the ecological environment is to help the government determine 
the potential and limitations of economic development and formulate appropriate policies and 
plans to achieve the sustainable development of the economy and ecological environment.

2.	 Materials and Methods

2.1	 Study area

	 The Chengdu Chongqing Economic Zone (Fig. 1) is situated in the upper reaches of the 
Yangtze River and the Sichuan Basin and encompasses 15 cities in Sichuan Province, including 
Chengdu, Meishan, and Suining, as well as 29 districts and counties in Chongqing, including 
Fuling. The total area of the Chengdu Chongqing Economic Zone is approximately 185000 km2, 
and it holds an important position in western China owing to its sizable population, rate of urban 
development, and industrial activities. Having witnessed rapid economic growth, the cities 
within the region have expanded significantly, resulting in swift changes in urban LULC, which 
have led to the need for the in-depth analysis of the evolving trends in habitat quality.(17)
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2.2	 Data sources

	 LULC data for the years 2000, 2010, and 2020 were selected for the research. The research 
data have been reclassified into six categories:(18) forest land, cultivated land, grassland, water 
area, urban area, and bare area. To analyze the factors driving LULC changes, eight natural, 
social, and economic aspects were decided upon to represent the variables that primarily affect 
urban expansion, and these were chosen in accordance with prior research.(19) The natural 
factors included variables such as digital elevation model (DEM) data and terrain slope, while 
economic and demographic variables included measures such as population density and GDP. 
The human impact variable, which represents human proximity to cities, roads, railway 
networks, and water bodies, was also considered, as this potential interference inevitably affects 
the development of urban land (Table 1). All data were projected using the Albers Equal Area 
Conic projection. 

2.3.	 Research framework

	 The total study area is approximately 184860 km2, with a spatial resolution of 300 × 300 m2. 
In this study, we employed the ANN-CA model and a habitat quality model to analyze and 
evaluate land change and habitat quality from 2000 to 2020. Three future scenarios of habitat 
quality, namely, NDS, CLSS, and EPDS, were analyzed and simulated using data from 2000 to 
2020.
	 First, LULC data from the year 2000, namely, road network information, DEM, and other 
data, were used to generate probability maps of different land use types. These data were then 

Fig. 1.	 (Color online) Location and topography of Chengdu Chongqing Economic Zone.
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used to simulate LULC in 2020. The simulation results were compared with actual LULC data 
to determine the accuracy of the model. When training the model based on the ANN-CA 
method, it should to repeatedly fit the model parameters to achieve the highest simulation effect. 
The final scheme is to train the network with a sampling ratio of 5%, 300 iterations, and 5 × 5 
neighborhood. Second, the model was again employed to simulate and predict LULC in 2040 
according to the three scenarios. Finally, the results of the habitat quality index (HQI) and 
habitat degradation index (HDI) from 2000 to 2040 were calculated using the InVEST model. 
The overall process is shown in Fig. 2.

2.4	 Methods

2.4.1	 ANN-CA model

	 The ANN-CA model is a grid-driven model with discrete temporal and spatial characteristics 
that can capture local spatial interactions and temporal–causal relationships. It allows us to 
achieve detailed simulations of the evolution of complex systems. In addition, it includes a 
probability calculation module based on neural networks and a cellular automata module based 
on adaptive inertia models. The probability calculation module was used to perform data 
sampling and neural network training on the spatial distribution of the driving factors to 
calculate the grid suitability probabilities of different land types. The cellular automata module 
then utilized the results of these calculations to determine the total conversion probabilities of 
each grid within a specified time. At the same time, the model was able to incorporate iterative 
simulations, including parameter settings for future land prediction, neighborhood factor 
debugging, and model verification. The iteration process continued until the specified time or 
future quantity target was reached, at which point the iteration was stopped, and the spatial 
characteristics of each land category were simulated. The relevant parameters and specific 
settings were as follows.

Table 1
Dataset description and sources.
Data type Variable Data interpretation and data unit Data source

Natural factors

Elevation Elevation in m GLSDEM (www.gscloud.cn/)
Slope Slope in degrees GLSDEM

Distance to river Euclidean distance to river in m OSM 
(https://www.openstreetmap.org.)

Geographical 
factors

Distance to city center Euclidean distance 
to city center in m OSM

Distance to road Euclidean distance 
to road network in m OSM

Distance to railway Euclidean distance to railway in m OSM

Human activity 
factors

Gross domestic product
Spatial distribution of GDP 

at a resolution of 1 km2. 
Unit: 10000 RMB/km2

RESD (www.resdc.cn)

LULC Land cover map 
with a spatial resolution of 300 m

CRDP 
(https://cds.climate.copernicus.eu)

Population Spatial distribution of population 
at a resolution of 3 arc Worldpop (www.worldpop.org)

http://www.gscloud.cn/
https://www.openstreetmap.org
http://www.resdc.cn
https://cds.climate.copernicus.eu
http://www.worldpop.org
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Here, p(k, t, l) is the conversion probability of grid cell k from the current category to the l 
category at simulation time t; RA is a random number; γ is a random number greater than 0 and 
less than 1; a is a parameter that limits random variables; Wj,l is the number of weights between 
two layers; netj(k, t) is the signal received by the jth neuron in the hidden layer. During each 
cycle calculation, the conversion probabilities of different types of LULC are calculated using 
neural networks. Finally, the land use type was determined according to the maximum value 
among these conversion probabilities.
	 The simulation accuracy of the ANN-CA coupling model is mainly tested using the Kappa 
coefficient. The Kappa coefficient is mainly used to verify the consistency between data. This 
coefficient is usually between 0 and 1. Its value can be divided into five groups to represent 
different levels of consistency: 0.0–0.20 for slight consistency, 0.20–0.40 for fair consistency, 
0.40–0.60 for moderate consistency, 0.60–0.80 for high consistency, and 0.80–1 for almost 
perfect consistency.

Fig. 2.	 (Color online) Flow chart for analysis of urban mirror quality and multiscenario simulation based on ANN-
CA model.
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Here, n is the total number of grids; N1 is the number of grids that simulate consistency; N is the 
number of land use types. In this study, N = 6. P0 represents the proportion of simulated 
consistent grid numbers. Pe is the reciprocal of the number of land types.

2.4.2	 Habitat quality model

	 HQI refers to the level of living environment conditions provided by ecosystems for the 
survival of individuals and populations. Higher habitat quality is associated with greater stability 
in the ecological structure and function of the habitat patch.(20) In this model, it was represented 
as a continuous value ranging from 0 to 1. The closer the HQI is to 1, the higher the habitat 
quality. It is affected by the manner and intensity of human LULC with increased intensity 
typically resulting in a decrease in habitat quality. The habitat quality was evaluated using Eqs. 
4–6.
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Here, Dxj is the HDI of grid unit x in type j; R is the number of threat factors; Wr is the weight; Yr 
is the number of grids that pose a threat; ry is the number of threat factors; irxy is the threat 
degree of the risk factor to the habitat; βx is the accessibility of threat factors; Sjr is the sensitivity 
coefficient of j-type habitats to threat factors; dxy is the distance between two grid cells (x, y); 
drmax is the maximum effect distance of the factors.
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Here, Qxj is the HQI of habitat type j at grid unit x, with a value range of [0, 1] (The higher the 
index value, the higher the ecological environment quality); Hj is the habitat suitability 
coefficient(20) for habitat type j; K is a semi-saturated parameter (usually 0.5); z

xjD  is the HDI of 
grid unit x in habitat type j; z is the default parameter of the model.
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	 In this study, cultivated land and urban areas were determined to be habitat threat factors due 
to their intense human activity. Moreover, the degree of the threat posed by these factors 
decreases as the distance from the habitat increases. To model the threat from cultivated land, a 
linear attenuation model was adopted, while for urban areas, an exponential attenuation model 
was used.

2.4.3	 Scenario simulation

	 For the simulation, three different conversion cost matrices based on three development 
scenarios were designed (Table 2).(21) In the NDS, the future land change rate was assumed to be 
consistent with the changes that occurred from 2000 to 2020. A linear model was utilized to 
simulate future land demand, and all land types were treated as interchangeable under these 
conditions. In the CLSS, the primary objective was to protect essential farmland. Therefore, the 
conversion of farmland to other land types was strictly prohibited, particularly in cases where it 
would otherwise be converted into an urban area. According to the EPDS, the ecological benefits 
of various types of land were prioritized as follows: forest land > water area > grassland > 
cultivated land > urban area > bare area. A conversion principle prohibited the transition from 
high- to low-ranked land types. The conversion rules are shown in Table 2.
	 Additional information regarding the specific scenarios is as follows:
(1)	�Under the NDS conditions, the LULC in the Chengdu Chongqing Urban Zone in 2040 was 

predicted on the basis of LULC trends between 2000 and 2020. In this scenario, it was 
assumed that each land type was not affected by external factors and continued to follow a 
linear trajectory consistent with its past development.

(2)	�Under the CLSS conditions, strict control was exercised over the amount of cultivated land 
that could be transformed, especially in cases where it was threatened by urbanization. In this 
model, urban area development mainly involves utilizing other land types, such as forest 
land. In addition, it is allowed to convert other land types into cultivated land.

(3)	�Under the EPDS conditions, environmental protection is prioritized. The principle of 
conversion between different land types under this scenario is that it is not allowed to convert 
land with high ecological benefits into land with low ecological benefits. The order of 
ecological benefits of different land types was as follows: forest land > water area > grassland 
> cultivated land > urban area > bare area. This development model emphasizes the balance 

Table 2 
Conversion parameters under different scenario conditions.

Land-use type
NDS CLSS EPDS

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ
Ⅰ 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0
Ⅱ 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0
Ⅲ 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0
Ⅳ 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 0
Ⅴ 1 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0 1 0
Ⅵ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
I: cultivated land, Ⅱ: forest land, Ⅲ: grassland, Ⅳ: water area, Ⅴ: urban land, Ⅵ: bare land.
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and coordination between environmental protection and economic development to achieve 
sustainable development. At the same time, it is also conducive to maintaining biodiversity 
and mitigating global issues such as climate change.

3.	 Results and Discussion 

3.1	 Accuracy analysis of LULC scenario simulation in Chengdu Chongqing Economic 
Zone

	
	 After completing the construction of the ANN-CA coupling model, the LULC of 2020 in the 
study area was simulated and predicted to test the accuracy of the model. The accuracy analysis 
results demonstrated that the Kappa coefficient for the period from 2000 to 2020 was 0.76. This 
confirmed that the model was capable of accurately simulating the LULC conditions in the study 
area for the year 2020. Therefore, it is also reasonable for this model to simulate the future 
LULC in the region.

3.2	 Analysis of the evolution of LULC in the Chengdu Chongqing Economic Zone from 
2000 to 2040

	
	 LULC in the Chengdu Chongqing Economic Zone exhibited the following notable features 
(Fig. 3): the predominant land use types within the zone are cultivated land, forest land, and 
urban areas. Cultivated land accounts for 58.08% of the total research area, while forest land 
accounts for 34.37%. Urban areas account for 4.90% of the total area, while grassland and water 
areas account for a relatively small proportion. Cultivated land is mainly concentrated in the 
Chengdu Plain and low-altitude areas of Chongqing, forming continuous patches of flat terrain, 
rivers, and favorable agricultural conditions. Forest land is mainly distributed in a fragmentary 
fashion in the hilly areas around the Chengdu Chongqing Economic Zone, including Anxian 
County, Shimian County, and Qianjiang District, as well as in the surrounding mountainous 
areas of Chongqing, including Huaying Mountain, Yunwu Mountain, and Jinyun Mountain. The 
urban areas are primarily located in regions with rapid economic development, such as Chengdu, 
Chongqing, and Mianyang. 
	 Viewed in terms of changes over time, the following are several characteristics worth noting: 
(1)	�Urban areas within the Chengdu Chongqing Economic Zone exhibited a multipolar explosive 

growth trend. Between 2000 and 2020 (Fig. 3), the total urban area increased by 5813 km2. 
On the basis of the NDS model, an increase of 5820 km2 between 2020 and 2040 was 
predicted, but this growth was limited to increases of 4226 and 3593 km2 in the CLSS and 
EPDS models, respectively. It was clear that under conditions of strict farmland and 
ecological protection policies, the urban area growth rate was restricted. The 2040 simulation 
predicted urban area growth rates that declined by 17.31 and 24.18% in the CLSS and EPDS 
models, respectively, compared with the NDS. 

	� In terms of space (Fig. 4), the surrounding areas of Chengdu and Chongqing are the main 
areas of urban land use, while Mianyang, Wanzhou District, Nanchong City, Changshou 



1534	 Sensors and Materials, Vol. 36, No. 4 (2024)

District, and Fuling District, among others, served as secondary growth areas. These regions 
feature relatively developed economies, dense populations, and high levels of urbanization, 
along with concentrations of contiguous cultivated land, leading to a high demand for land 
resources for construction purposes.

(2)	�Owing to the predominance of plain areas within the Chengdu Chongqing Economic Zone, 
there was little change in the amount of forest land between 2000 and 2020. From 2020 to 
2040, the NDS model projected a decrease of 1037 km2 (approximately 2%) in forest land; 
however, in the CLSS model, forest land decreased by 1309 km2, mainly due to strict 
farmland protection policies and urban land expansion, which led to a portion of the forest 
land being converted into urban areas. Conversely, the EPDS model predicted an increase of 
2146 km2 in forest land, with an average annual increase of 100 km2. This increase suggests 
development favorable to the ecological environment. 

(3)	�From 2000 to 2020, the cultivated land area sharply decreased by 6088 km2. This was mainly 
driven by the region’s rapid development, which led to the occupation and conversion of the 

Fig. 3.	 (Color online) LULC in Chengdu Chongqing Economic Zone from 2000 to 2040.
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surrounding farmland. The NDS model predicted a decrease of approximately 2000 km2 in 
cultivated land area by 2040, while the CLSS model projected a slight increase. The 
implementation of strict farmland protection policies in the latter scenario ensured complicity 
with the minimum area requirements for the remaining cultivated land. In the EPDS model, 
cultivated land decreased by 4116 km2, with 39% being converted into urban areas and the 
remaining portion transitioning to forest land.

(4)	�A small amount of grassland is distributed in the mountainous areas surrounding the 
Chengdu Chongqing Economic Zone. Between 2000 and 2020, these grassland areas 
decreased by 179 km2. The NDS model predicted that these areas would continue to decrease 
by about 100 km2 by 2040. In the CLSS model, grassland area was projected to decrease by 
1378 km2, mainly due to the strict control of cultivated land, leading to its conversion into 
urban areas. In the EPDS model, the grassland area slightly increased. Protecting grasslands 
is of great significance as they have important ecological, economic, social, and cultural 
values.

	 Regardless of the scenario [Figs. 4(d)–4(f)], cultivated land, especially in the cities’ 
outskirts, is the land type subject to the most changes, making it the primary target of 
competition among various stakeholders.(22) This is because cultivated land accounts for the 

Fig. 4.	 (Color online) Spatial distribution of land in Chengdu Chongqing Economic Zone from 2000 to 2040. 
(a) 2000, (b) 2010, (c) 2020, (d) 2040NDS, (e) 2040CLSS, and (f) 2040EPDS.

(a) (b) (c)

(d) (e) (f)
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largest proportion of land among any of the land types and is widely distributed throughout the 
Chengdu Chongqing Urban Zone. On the other hand, although cultivated land may not possess 
the greatest economic or ecological value, it often features natural and geographical attributes 
such as fertile soil, flat terrain, a suitable climate, and favorable hydrological conditions. These 
characteristics contribute to the enormous economic and ecological value output potential of 
cultivated land, thereby positioning it as a “key zone” in mitigating LULC conflicts.

3.3	 Analysis of habitat quality in the Chengdu Chongqing Economic Zone

3.3.1	 Analysis of the changing characteristics of habitat quality

	 The HQI and HDI were used to evaluate the overall environmental quality within the study 
area.(23) The HQI quantifies the environmental conditions and resource capacities that support 
the sustainable survival and reproduction of species and populations.(24) Data were input into the 
InVEST model’s habitat quality evaluation module to obtain the HQI and degree of habitat 
degradation for the years 2000, 2020, and 2040. On the basis of the actual habitat quality of the 
study area, the classification was divided into four levels: low, medium, good, and excellent. The 
corresponding habitat quality indices ranged from 0 to 0.2, 0.2 to 0.5, 0.5 to 0.8, and 0.8 to 1, 
respectively.
	 In 2000–2020 [Figs. 5(a)–5(c)], the average HQI values of the Chengdu Chongqing Economic 
Zone were 0.6494, 0.6432, and 0.6336, indicating a downward trend in habitat quality. The 
number of areas with low habitat quality increased by 5743 km2. However, areas with good and 
excellent habitat quality levels increased by 219 km2 over the same timeframe. In the later stage, 
the region embraced a green development path and vigorously implemented ecological protection 
projects such as the “Grain for Green Project”, as well as various construction projects, which 
effectively promoted the improvement of environmental quality.
	 The simulation results predicted significant changes in the overall habitat quality of this area 
from 2020 to 2040. In the NDS model, areas [Fig. 5(d)] with low habitat quality increased by 
5690 km2, while areas with medium habitat quality decreased by 6040 km2, mainly transforming 
into areas with low habitat quality. In this scenario, areas with good habitat quality increased by 
194 km2, and excellent-level areas increased by 155 km2. 
	 In the CLSS model, areas [Fig. 5(e)] with low habitat quality increased by 4139 km2, a 
difference of 1550 km2 compared with the previous scenario (NDS). The medium-habitat-
quality area increased by 864 km2, while areas with good and excellent levels decreased by a 
total of 5003 km2. This decline can be attributed to strict farmland protection policies, where the 
cultivated land area not only remained stable but actually increased slightly, while the urban land 
area expanded by 4226 km2. The increases in cultivated land and urban areas mainly stemmed 
from the reclamation of grass and forests, which involved the replenishment of reserve resources 
and the reclamation of shrubbery and other land into cultivated land. These changes led to a 
decrease in the overall habitat quality of the region. 
	 Finally, in the EPDS model, areas [Fig. 5(f)] with low habitat quality increased by 3559 km2 
between 2020 and 2040 compared with the prior 20 years. However, their growth rate decreased 
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from 3.10% during the first 20 years to 1.92% between 2020 and 2040. Medium-habitat-quality 
areas decreased by 4111 km2 in this model, while areas classified as good and excellent increased 
by 327 and 223 km2, respectively. The increase in good-habitat-quality areas was attributed to 
strategies prioritizing ecological development. Since economic development in this scenario 
must be predicated on ecological protection, industrial and mining land was reclaimed and 
afforested, urban expansion was strictly controlled within the limits of the “ecological red line”, 
and unsuitable farmland was converted into ecological land.
	 Clearly, the habitat quality patterns of the Chengdu Chongqing urban agglomeration from 
2000 to 2040 featured both commonalities as well as significant distinctions in the different 
scenarios. For example, the spatial distribution characteristics of LULC in these simulation 
scenarios generally remained consistent with the distribution characteristics of the research area 
in the previous 20 years, suggesting a certain degree of dependence and lag in the evolutionary 
process that affects changes in habitat quality. Spatial analysis revealed that the overall habitat 
quality of the study area gradually decreased from the periphery to the center from 2000 to 
2040, demonstrating a distribution pattern that can be described as “low in the two centers and 
high in the suburbs” (Fig. 5). 

Fig. 5.	 (Color online) Distribution map of habitat quality in the study area from 2000 to 2040. (a) 2000, (b) 2010, 
(c) 2020, (d) 2040NDS, (e) 2040CLSS, and (f) 2040EPDS.

(a) (b) (c)

(d) (e) (f)
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	 The surrounding areas of Chengdu and Chongqing, limited by terrain height, slopes, water 
content, soil conditions, and other factors, are largely covered by forest land. With limited 
suitability for residence and farming in these areas, they remain relatively unaffected by human 
activity, and the HQI was therefore high. Hongya County, Muchuan County, Xingwen County, 
Nanchuan District, and other regions exhibited comparatively high habitat quality indices, most 
of which were above 0.8. On the other hand, the Chengdu Plain, a small terrain with a large 
distribution of plains and river basins, was greatly affected by human interference. The areas 
with low HQI were distributed in Chengdu and Chongqing. These low-habitat-quality areas 
displayed a “two-core-centered, multilevel distribution” spatial morphology. The changes in 
habitat quality were mainly due to changes in LULC patterns caused by human activities, such 
as agricultural development, mining, and urbanization. Therefore, we must moderately develop 
the economy while protecting the natural environment.

3.3.2	 Changes to habitat degradation levels in the Chengdu Chongqing Economic Zone

	 The HDI was analyzed by the natural breakpoint classification method in ArcGIS. This 
approach allows for the qualitative analysis and interpretation of spatial distribution patterns. By 
this method, the ecological degradation index of the Chengdu Chongqing Economic Zone was 
divided into four levels: basically unchanged, slightly degraded, moderately degraded, and 
highly degraded. The corresponding ranges of values for the HDI were 0–0.05, 0.05–0.10, 0.10–
0.15, and above 0.15, respectively. The HDI is an indicator used to measure the degree of decline 
in habitat quality, with a higher HDI indicating a greater impact and more severe degradation.
	 The significance of HDI is to evaluate the impact of human activities on the natural 
environment, especially the degree of degradation of habitat quality. The larger the degradation 
index of habitat quality, the more severe the degradation of habitat quality. The average habitat 
degradation indices in the study area for the years 2000, 2010, and 2020 were 0.0935, 0.0938, and 
0.0949, respectively, indicating an overall intensification of habitat degradation. By 2020, areas 
with nearly no habitat quality degradation accounted for 23.10% of all areas; 46,738 km2 (25.26% 
of the total area) and 73,143 km2 (39.53% of the total area) were classified as slightly degraded 
and moderately degraded, respectively. Highly degraded areas comprised 22,409 km2, 
accounting for approximately 12% of all areas. 
	 From Fig. 6, changes in habitat degradation levels between 2000 and 2020 were found. The 
area classified as “basically unchanged” exhibited a growth trend, with an increase of 
approximately 4682 km2 over this period. Conversely, “slightly degraded” areas decreased by 
approximately 8411 km2. Areas found to be moderately degraded showed an initial decrease 
before increasing, but the total amount of change was not significant. Highly degraded areas 
occurred in an increasing trend, with a total increase of 3755 km2 over the 20-year period, 
ultimately accounting for 2.03% of the total area. This was because urban expansion requires a 
significant amount of land resources, and forest land was usually one of the first choices for 
urban expansion.
	 The HDI values for the year 2040 were 0.0968, 0.0973, and 0.0953 for NDS, CLSS, and 
EPDS, respectively, which were simulated using the ANN-CA model. To ensure the minimum 
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amount of cultivated land and urban development in the CLSS model, some forest lands are 
reclaimed for cultivation and construction, which disrupt the balance of the ecosystem and lead 
to higher levels of degradation. In the EPDS model, the HDI was the lowest. In NDS, forest land 
and grassland remained almost unchanged, with the significant conversion of farmland to urban 
area exacerbating the deterioration of regional habitat quality.
	 It can be seen from Figs. 7(a)–7(c) that between 2000 and 2020, areas with high HDI in the 
Chengdu Chongqing Economic Zone are mainly distributed across Shuangliu District, Xinjin 
District, Wenjiang District, Xindu District, Meishan’s Pengshan District, Chongqing’s Beipei 
District, Yubei District, Jiulongpo District, and other areas where rapid economic development 
took place. However, Lushan County, Hongya County, Xuanhan County, and other locales 
within the region have HDI values near 0. These regions feature relatively high altitude, limited 
human activity, and land use types characterized by forest land and grassland, which contribute 
to their higher ecosystem conservation capacity. 
	 Areas with moderately degraded habitat quality include Lezhi, Tongnan, Wusheng, and 
Nanbu counties. These areas primarily consist of cultivated land and water area. The analysis of 

Fig. 6.	 (Color online) Statistical charts of habitat degradation indices at different stages and levels.
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the stochastic matrix of LULC change revealed that the main LULC changes involved transitions 
from cultivated land to grassland or grassland to water area, which are typically less affected by 
human activities. 
	 Overall, the areas with highly degraded habitat quality were located in the surrounding areas 
of Chengdu and Chongqing, with the level of degradation decreasing as one moves away from 
these two centers. By 2040, the NDS model [Fig. 7(d)] predicted an expansion of the severely 
degraded areas, with gradual distributions occurring in Chengdu, Meishan, Deyang, and 
Mianyang. Surrounding areas of degradation in Chongqing were projected to spread to the 
periphery. The degree of degradation is related to trends in urbanization, industrialization, 
human activities, and rapid urban expansion, all of which exert pressure on the ecological 
environment. 
	 In the CLSS model [Fig. 7(e)], areas with high degradation have also expanded, mainly due to 
frequent human activities such as the cultivation of arable land. Highly degraded areas still 
surround the urban centers of Chengdu, Chongqing, Mianyang, Meishan, Deyang, and Dazhou, 
and spread outward. Additionally, large areas of severe degradation appeared in Sichuan, while 
Chongqing’s degradation was mitigated by its terrain.

(a) (b) (c)

(d) (e) (f)

Fig. 7.	 (Color online) Spatial distribution map of habitat degradation during different periods.
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	 Following the EPDS model simulation [Fig. 7(f)], this model also exhibited smaller impacts 
of habitat degradation in Chengdu and its surrounding areas compared with the NDS and CLSS 
models, owing to ecological measures that to some extent limit urban development.(25) However, 
the degree of degradation in regions such as Chongqing remained higher than that, which was 
observed in the NDS and EPDS models. This can be attributed to urban development in 
Chongqing encroaching upon the forests of the surrounding mountainous and hilly regions, 
intensifying degradation. Overall, owing to the implementation of active ecological priority 
development strategies and policies in some regions, such as the “Natural Forest Protection 
Project”, the “Key Protection Forest System Construction Project in the Middle and Lower 
Yangtze River Region”, and the “Wildlife and Plant Protection and Nature Reserve Construction 
Project”, the degree of habitat quality degradation under this model is relatively low. These 
measures will help alleviate habitat quality degradation.

4.	 Conclusions

	 The spatial heterogeneity of LULC and habitat quality in the Chengdu Chongqing Economic 
Zone from 2000 to 2020 were analyzed and studied using the InVEST habitat quality model. To 
predict and simulate habitat quality in 2040, three scenario simulations were conducted and the 
following conclusions were drawn: 
(1)	From 2000 to 2020, the urban land in the study area exhibited continuous growth, while the 

areas of forest land, grassland, and arable land continued to decrease. The transformations of 
LULC, particularly among cultivated land, grassland, forest land, and urban land, were 
evident, with the transfer of cultivated land to urban area being especially notable. The 
simulation results indicated varying degrees of increases in urban land use by 2040. The 
increase is the largest in NDS and the smallest in EPDS. In CLSS, the cultivated land area 
slightly increased. The EPDS model is characterized by relatively unchanged distributions of 
forest land, water area, and grassland, with increases in urban land area coming primarily 
from cultivated land.

(2)	The overall habitat quality in the Chengdu Chongqing Economic Zone was rated as “good”, 
but indicated a downward trend. Medium-habitat-quality areas comprised the majority of the 
region but also displayed a downward trend. Areas with good and excellent habitat quality 
levels initially increased but were followed by slight decreases. A close relationship between 
habitat quality and LULC was also identified. This means that the way people use land can 
directly affect the quality of habitats, thereby affecting the survival status of organisms in the 
habitats. Forest land, grassland, and water areas maintained high habitat quality levels, while 
in urban areas, these values were notably lower. The decline in habitat quality was mainly 
due to reductions in forest and grassland areas. From a spatial perspective, areas with higher 
elevations around the Chengdu Chongqing Economic Zone generally had a higher habitat 
quality than plain areas. Areas with frequent human activities were often areas with low 
habitat quality. The conclusion also indirectly confirms the negative impact of human 
activities on habitat quality. Therefore, we should not only formulate strict ecological 
protection policies, but also strengthen the public participation and supervision of 
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environmental protection activities. At the same time, developing green industries reduces 
the contradiction between ecological protection and economic development, thus forming a 
virtuous cycle.

(3)	The HDI in the Chengdu Chongqing Economic Zone showed an upward trend from 2000 to 
2020. Projecting to 2040, the EPDS model featured the lowest degradation index compared 
with the NDS and CLSS models. The implementation of ecological priority development 
strategies ensured the preservation of ecological land such as forests and limited the 
uncontrolled expansion of urban areas. To maintain the biodiversity of the region, it is crucial 
that the development and utilization of land be managed scientifically and legally. This 
involves enhanced planning to strengthen the protection of grasslands and forests and 
maintain ecological land areas. Additionally, attention should be paid to the composition and 
spatial allocation of land structures as well as further improvements to the overall quality of 
existing ecological land, thus enhancing the overall habitat quality within the region. At the 
stage of urban spatial planning, attention should be paid to the coordination of urban 
development, ecosystem protection, and cultivated land protection. For example, a 
compensation mechanism for cultivated land should be established in the surrounding areas 
of cities to reduce the decline of habitat quality caused by urbanization. In the future urban 
planning, the government should prevent the disorderly expansion of a city and build green 
spaces inside the city, so as to slow down the decline of the habitat quality in this area.

	 There are certain limitations of this study. First, some evaluation factors in the model were 
difficult to classify, such as the lack of road grading, which limited the scientific evaluation of 
changes in habitat quality risk factors. Second, all threats to land use types in the model were 
simply aggregated, neglecting the cumulative impact of multiple threats.(26)

	 This research provides valuable insights into the LULC dynamics and habitat quality of the 
Chengdu Chongqing Economic Zone, highlighting the need for sustainable land management 
practices and ecological protection measures to ensure the long-term well-being of the region’s 
ecosystems.
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