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 The rapid deployment of IoT devices for enhanced convenience and increased production 
efficiency has resulted in a significant rise in the potential for cyberattacks. Consequently, the 
detection of malicious attacks has become a crucial concern in industrial IoT (IIoT) applications. 
Furthermore, IoT usage is continuously expanding, with new functional IoT devices connecting 
to the network daily, leading to a substantial increase in network traffic. To address the need for 
an intrusion detection system (IDS) to identify malicious attacks under a high-traffic condition, 
a highly efficient IDS is essential. In this study, an IDS based on machine learning (ML) with a 
reduced set of features on the TON_IoT dataset is employed. The TON_IoT includes telemetry 
data, operating systems data, and network data for an IoT network. A Pearson correlation 
coefficient (PCC) was applied to assess the correlations among packet features, and a filtering 
rule based on the Jamovi software’s frequency table was used to identify the most essential 
features within the TON_IoT dataset. Finally, the 45 original features were narrowed down to 10 
core features for the IDS to effectively detect intrusion activities. To evaluate the detection 
performance of malicious intrusion activities using the yielded set of 10 core features, we 
utilized evaluation metrics including accuracy, precision, recall, and F1-score. Four ML 
techniques, namely, K-Nearest Neighbors, Random Forest, Naïve Bayes, and eXtreme Gradient 
Boosting, were tested. The experimental results demonstrated that the four ML techniques could 
detect multiple types of attack with an accuracy exceeding 96% and with a recall rate over 97%, 
underscoring the effectiveness and efficiency of utilizing the reduced 10 core features for 
malicious attack detection while maintaining a high level of accuracy.

1. Introduction

 A report entitled “Cyber Signals ISSUE 3” published by Microsoft at the end of 2022 
highlighted the increasing trend among organizations to integrate IoT and operational 
technology(1,2) devices into their operations. While this integration has led to improved 
production efficiency, it has also exposed vulnerabilities to various forms of attack. Alarmingly, 
the report noted that as much as 75% of industrial devices remained unpatched for high-risk 
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vulnerabilities. The diverse devices have made it challenging to update the underlying 
equipment, posing a significant obstacle in defending against malicious attacks within IoT/
industrial IoT (IIoT) environments. Among the various defense technologies, an intrusion 
detection system (IDS) based on machine learning (ML) has emerged as a crucial tool for early 
anomaly detection.
 IDS technology based on ML is becoming increasingly widespread. For instance, Linear 
Discriminant Analysis (LDA), Random Forest (RF), and Classification and Regression Trees 
(CART) were used for intrusion classification.(3) Meanwhile, a hybrid learning model based on 
K-Nearest Neighbors (KNN) for intrusion detection was developed, evaluating its performance 
using the KDD-Cup 99 dataset.(4)

 The effectiveness of ML-based IDSs hinges on the diversity of the dataset they are trained 
on. In this context, the TON_IoT dataset, proposed by UNSW in 2020, emerges as a valuable 
resource.(5) Given the continuous expansion of the IoT market and the daily influx of new IoT 
devices deployed, network traffic experiences rapid growth. To enable IDSs to efficiently 
identify malicious attacks under a high-traffic network condition, the need for highly efficient 
IDSs becomes evident. Restated, the required packet features have to be cut down to lower the 
computation complexity.(6) In a separate study, Guo et al. proposed using the Spearman rank 
correlation coefficient as a feature selection method to develop an ML-based IDS framework 
specifically for IoT systems.(7) Ultimately, 18 features were selected for the development of the 
stacking model. The performance of the stacking model on the TON_IoT network dataset was 
evaluated. The experimental results showed that multi class classification and binary 
classification achieved accuracies of 0.9949 and 0.9987, respectively.(7) Additionally, Telikani et 
al. used RF feature analysis for feature selection and ultimately selected 23 features. The 
performance of the hybrid model on the TON_IoT network dataset was evaluated. The 
experimental results showed that multi class classification and binary classification achieved 
precisions of 97.3 and 98.1%, respectively.(8)

 To cut down the packet features used for ML, in this work, we applied the Pearson correlation 
coefficient (PCC) to calculate feature correlations among the dataset’s attributes and utilized 
Jamovi analysis software to generate a frequency table for identifying the key features within the 
TON_IoT dataset. Finally, the original 45 features were reduced to a set of 10 core data features, 
which are subsequently employed to detect potential malicious attack activities. 
 The objective of this study revolves around the development of an ML-based IDS to detect 
malicious attacks in an IIoT circumstance using the 10 determined core data features. To verify 
the ML-based IDS detection performance of malicious intrusion behaviors using the yielded 10 
core features, ML techniques such as KNN, RF, Naïve Bayes (NB), and eXtreme Gradient 
Boosting (XGB) are employed for the multiclass classification test, utilizing the TON_IoT 
dataset. To assess the model’s reliability and performance, metrics such as accuracy, precision, 
recall, and F1-score are evaluated.
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2. Datasets

 To enhance the performance of ML techniques in detecting malicious activities, a statistical 
analysis and ML evaluation on the newly introduced ToN_IoT dataset were conducted by Booij 
et al.(9) They also compared the ToN_IoT dataset with other IoT datasets, highlighting the 
significance of dataset diversity and how differences between datasets can significantly affect 
detection performance. The ToN_IoT dataset contains recorded attack data in a real-world IIoT 
environment. Its distinctive advantage lies in its provision of up to ten distinct attack categories 
and diverse data types, including packet data, sensor data, and log data.
 In this study, we developed a three-layered test platform, encompassing edge, fog, and cloud 
layers, to gather data that mirrors real data in IoT/IIoT network environments. The TON_IoT 
dataset comprises three distinct data types: raw, log, and sensor, and it incorporates nine 
different types of IoT device. It offers nine categories of attack methods: ransomware, XSS, 
backdoors, injections, DoS, DDoS, passwords, scanning, and MITM. The frequency of attacks 
in each category is documented as depicted in Table 1. The TON_IoT dataset encompasses 45 
features, two of which are used for data labeling as illustrated in Table 2.

Table 1
Records on TON_IoT network dataset.
Type No. of rows
normal 300000
backdoor  20000
injection  20000
password  20000
scanning  20000
ransomware  20000
xss  20000
ddos  20000
dos  20000
mtim     1043

Table 2
Features of TON_IoT dataset.
Activity Features
Data labeling label, type

Connection ts, src_ip, src_port, src_btyes, dst_bytes, service, duration, dst_ip, dst_port, proto, conn_
state, missed_bytes

HTTP
http_trans_depth, http_request_body_len, http_response_body_len, http_status_code, 
http_user_agent,http_method, http_uri, http_version, http_orig_mime_types, http_resp_
mime_types

SSL  ssl_established, ssl_subject, ssl_version, ssl_cipher, ssl_resumed, ssl_issuer
DNS dns_AA, dns_RD, dns_RA, dns_query, dns_qclass, dns_qtype, dns_rcode, dns_rejected
Statistical src_pkts, dst_pkts, src_ip_bytes, dst_ip_bytes
Violation weird_name, weird_notice, weird_addl
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3. Methodology

3.1 Data cleaning

 We utilized the Train_Test_Network feature subset part of the TON_IoT dataset. Two label 
features, “dns_query” and “http_uri,” which represent DNS query responses and URL post 
parameters, respectively, are excluded since they contain less information to be effectively used 
in identifying the malicious attacks. Additionally, features marked with a “-” were replaced with 
a value of 0 during data preprocessing.
 Moreover, non-numeric features were converted into numerical values. The label encoding 
scheme was employed for this purpose without increasing the dimensionality of the dataset.

3.2 Feature selection

 The suggested process of feature selection is illustrated in Fig. 1. Initially, the PCC is 
employed to assess the relationships between features, and then the top 20 features with high 
PCCs are retained. Subsequently, a frequency table for each feature is generated through the 
Jamovi analysis indicating the occurrence frequency of attack types associated with each feature 
value. Finally, less significant features are filtered out from the dataset, and the selected core 
features used for ML are obtained.
 The PCC is utilized to measure the strength and direction of the linear relationship between 
two variables. The correlation value (cv) range is [ ]1,1cv∈ − , where −1 indicates a perfect 
negative correlation, 1 indicates a perfect positive correlation, and 0 indicates no correlation. the 
PCC has been widely used in many applications, such as in checking whether signals and noise 
are corrected(10) and verifying whether rolling bearing vibration signals and bearing health are 
correlated.(11)

 In this research, each feature was examined for its correlations with other features. A total 
correlation value (TCV) for each feature was calculated by adding those correction values that 
are greater than 0, i.e., , 0  i ii

TCV cv cv= >∑ . These TCVs were then sorted in descending order. 
The first half of the TCV features, i.e., the top 20 TCV features, were retained. An example of the 
PCC using four randomly selected features in the TON_IoT dataset and the corresponding sorted 
TCV are shown in Table 3.
 Figures 2 and 3 show the counts of different attack-type occurrences on different “ssl_cipher” 
and “dns_rejected” feature values. Figure 2 highlights that the packet distribution is unevenly 
associated with the feature values, which could potentially introduce classification bias towards 

Fig. 1. Feature selection.
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the dominant class.(12) To address this issue, a frequency table filtering rule was introduced; if 
the count of at least 8 different packet types within a specific feature value is 0, then the 
particular feature is excluded from consideration for malicious detection.
 Finally, 10 features are selected for use in ML after the above-stated PCC and frequency table 
processing. The 10 determined core features are shown in Table 4. 

3.3 ML methods

 Before applying ML, features have to be processed to prevent feature skewing. Hence, a 
normalization method is employed to standardize attributes to a uniform scale. A min–max 
scaler, as defined in Eq. (1), is utilized for adjusting feature values. In Eq. (1), “x” represents a 

Table 3
Four features of PCC and TCV example.

Features
1 2 3 4 TCV

Features

3 0.8890 0.9374 1 −0.1980 1.8265
1 1 0.8398 0.8890 −0.2290 1.7289
2 0.8398 1 0.9374 −0.1771 1.7773
4 −0.2290 −0.1771 −0.1980 1 0

Fig. 2. Frequency table of ssl_cipher.
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specific feature value, while “xmax” and “xmin” denote the maximum and minimum feature 
values, respectively. Accordingly, the resulting feature value “x'” is rescaled to fall within the 
range of 0 to 1.

Fig. 3. Frequency table of dns_rejected.

Table 4
Ten selected 10 core features.
No. Feature
1 http_version
2 proto
3 conn_state
4 weird_notice
5 dns_rejected
6 dns_RA
7 dns_AA
8 dns_RD
9 ts

10 type
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 There are four supervised ML techniques, KNN, RF, NB, and XGB, which have been well 
applied in various multi class classification applications with good performance. KNN(13) is a 
supervised ML algorithm that can be employed to tackle both classification and regression 
problems. It does not necessitate any preprocessing of all labeled samples before its application. 
To predict the value of new data points, the algorithm utilizes the concept of “feature similarity”. 
 RF(14) is an ensemble learning method that operates by constructing a multitude of decision 
trees. Each tree serves as a fundamental classifier, and the outcomes are derived from the 
analysis of these decision trees.
 XGB(15) is derived from the Gradient Boosting Decision Tree (GBDT).(16) Compared with 
GBDT, the advantage of XGB lies in its support for linear classifiers and its use of second-order 
derivatives to perform Taylor expansion on the cost function, resulting in more accurate 
outcomes.
 NB(17) is a simple yet powerful probability estimator that operates on the application of 
Bayes’ theorem, with the assumption that the attributes under consideration are independent 
among all attributes. This implies that each feature independently influences the outcome.

4. Results and Discussion

4.1 Split dataset

 The TON_IoT dataset is divided in such a way that 70% of the data is utilized for training, 
while the remaining 30% is set aside for testing.

4.2 Performance metrics

 To evaluate the performance of ML models on the reduced 10 core features, four metrics 
were used, namely, accuracy, precision, recall, and F1-score. These measures are calculated 
using true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) as 
defined in Eqs. (2)–(5).

 TP TNAccuracy
TP TN FP FN

+
=

+ + +
 (2)

 TPPrecision
TP FP

=
+

 (3)

 TPRecall
TP FN

=
+

 (4)

 1- 2 Precision RecallF score
Precision Recall

×
= ×

+
 (5)
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4.3 Analysis and evaluation

 To verify the ML performance of applying the proposed scheme, various combinations with 
PCC treatment and frequency table filtering rule were tested, as shown in Table 5. When the top 
20 features are retained after PCC processing and the 10 core features are obtained after using 
frequency table filtering rules, the maximum average accuracy of the four models can be 
obtained at 0.9904. Additionally, even if only the top 20 features are retained after PCC 
processing without using frequency table filtering rules, the maximum average accuracy can be 
obtained at 0.9903, as indicated in the table.
 Figures 4 and 5 show the attack classification test performances, namely, precision, recall, 
and F1-score using both the KNN and RF models, respectively, including using the reduced 10 
core features with the original 44 features. The KNN classification results using the 10 core 
features outperform those using the 44 features across most attack types except for the “Passwd” 
type, and with a notable improvement in the ‘mitm’ attack category, the recall rate is over 0.98. 
Meanwhile, the classification results of RF using the 10 core features exhibit strong consistency 
with those of RF using the original 44 features across the most attack categories. Similarly, in 
the classification results of RF using 10 core features, the performances for “Passwd” and 
“mitm” attack types are similar to the effects of using KNN.
 The NB and XGB models’ test performances are depicted in Figs. 6 and 7, respectively, also 
using the reduced 10 core features and the original 44 features. The XGB classification results 
show a precision of over 0.98 across all data types, whether using 10 core features or using the 
original 44 features. Furthermore, Table 6 provides the averaged precision, recall, and F1-score 
for all data types using both the 10 core features and 44 original features. The maximum and 
minimum recall rates obtained by applying 10 core features are 0.99885 and 0.97800, which 
were used in the XGB and NB models, respectively. 

Table 5
Classification results of models.

PCC Filtering rule Core 
Features

Model Accuracy SUM AVG.KNN NB RF XGB
w/o w/o 44 0.9973 0.9731 0.9995 0.9999 0.9924
top 15 w/o 16 0.7392 0.0894 0.7687 0.7687 0.5915
top 15 >0 8 8 0.69 0.1814 0.7689 0.7689 0.6023
top 15 >0 7 8 0.69 0.1814 0.7689 0.7689 0.6023
top 15 >0 6 8 0.69 0.1814 0.7689 0.7689 0.6023
top 20 w/o 21 0.9977 0.9675 0.998 0.9981 0.9903
top 20 >0 8 10 0.9985 0.9657 0.9988 0.9989 0.9904
top 20 >0 7 7 0.9974 0.9657 0.9968 0.9968 0.9891
top 20 >0 6 7 0.9974 0.9657 0.9968 0.9968 0.9891
top 50% w/o 23 0.998 0.9636 0.9976 0.9977 0.9892
top 50% >0 8 10 0.9985 0.9657 0.9988 0.9989 0.9904
top 50% >0 7 7 0.9974 0.9657 0.9968 0.9968 0.9891
top 50% >0 6 7 0.9974 0.9657 0.9968 0.9968 0.9891
top 60% w/o 27 0.9964 0.9656 0.9984 0.9984 0.9897
top 60% >0 8 11 0.9976 0.9636 0.9983 0.9984 0.9894
top 60% >0 7 8 0.9975 0.9642 0.9977 0.9977 0.9892
top 60% >0 6 8 0.9975 0.9642 0.9977 0.9977 0.9892
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Fig. 5. (Color online) RF model classification results.

Fig. 4. (Color online) KNN model classification results.

Fig. 6. (Color online) NB model classification results.
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Fig. 7. (Color online) XGB model classification results.

Table 6
Averaged performance metrics.
Model Precision Recall F1-score
KNN (44 features) 0.9959 0.99023 0.99583
KNN (10 features) 0.99992 0.99748 0.99833
RF (44 features) 0.9992 0.99748 0.99833
RF (10 features) 0.99773 0.99652 0.99718
NB (44 features) 0.95717 0.99147 0.97089
NB (10 features) 0.95481 0.97800 0.96295
XGB (44 features) 0.99995 0.99997 0.99996
XGB (10 features) 0.99846 0.99885 0.99865

5. Conclusions

 We proposed a scheme combining PCC and a frequency filtering rule to select the core data 
features to enhance the ML model’s efficiency. The PCC was calculated between features, and 
20 features were chosen on the basis of TCV. A filtering rule associated with frequency analysis 
was used to select the core features on the TON_IoT network dataset, and the 45 original features 
were cut down to 10 core features. Four ML models (KNN, RF, NB, and XGB) were trained and 
tested using the 10 selected core features (as listed in Table 4) to confirm the efficiency of 
malicious attack detection efficiency in an IIoT environment. The recall rate indicates how many 
of the data samples that are true are predicted correctly. Hence, the most important performance 
index in the detection of malicious attacks in an IIoT environment is the recall rate. The 
experimental results indicate a recall rate of using 10 core data features exceeding 0.97 for all 
four ML models, with the KNN, RF, and XGB models achieving a recall of over 0.996, as shown 
in Table 6. Therefore, the 10 selected core features proposed in this study remain effective and 
efficient in detecting malicious attack activities and classifying various attack types in an IIoT 
environment.
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