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	 Freshwater fish is one of the commodities experiencing an increasing growth rate from 1990 
to 2018. Many efforts have been made to meet market needs, through both fisheries technology 
and applied technology, one of which is an integrated monitoring system. In this study, an 
aquaculture monitoring system was developed that integrates wireless sensor networks (WSNs) 
based on temperature, pH, and turbidity with deep reinforcement learning. The purpose of this 
study is to produce a convenient, precise, and low-cost aquaculture monitoring system. The 
stages of the study are (1) the integration of all the WSN components, (2) the validation of the 
WSNs, (3) the implementation of the analysis model in the system, (4) the implementation of the 
recommended model into the DRL system, and (5) practical experimentation using the 
aquaculture monitoring system. The WSN validation results indicate that the average percentage 
error is 3.23%, whereas at the system modeling stage, the optimal accuracy is 98.80%. In the 
experiment to monitor real aquaculture environmental conditions, an accuracy of 97% is 
obtained.

1.	 Introduction

	 The amount of freshwater fish consumed globally has continued to increase over the last few 
decades, with a total increase of 122% in fish consumption from 1990 to 2018.(1) Some of the 
challenges faced by several countries in freshwater fish production include (1) policy and 
governance, (2) climate change, (3) the quality and availability of water, (4) habitat degradation, 
and (5) the lack of data and information.(2) The challenges, namely, the quality and availability of 
water and the lack of data and information, can be solved by implementing machine-learning-
based technology combined with wireless sensor networks (WSNs) that provide accurate real-
time data to users.(3) Technically, this technology can be implemented, for example, to determine 
whether the condition of fish pond water is normal or abnormal. Thus, the user can immediately 
determine the condition of the pond water in real time and the recommendations for this 
condition, which can increase the productivity of freshwater fish production in the long term.
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	 WSNs are a subset of IoT and combine several nodes having sensors and microcontrollers 
that are then integrated into a single unit in a certain network pattern.(4) WSNs have several 
advantages, including speeding up the data processing, because nodes containing sensors 
directly transmit data to servers, and networks within WSNs can back up each other’s data.(5) In 
several previous studies, WSN technology was implemented in fish management. For example, 
Wang et al. implemented WSNs combined with unmanned aerial vehicle systems in inland 
aquaculture water quality evaluation.(6) The monitoring device integrates the dissolved oxygen 
and turbidity sensors to monitor real-time environmental conditions. System quality analysis 
was performed by calculating the correlation between real-time and predicted values, or R2, 
where the dissolved oxygen and turbidity sensors yielded 0.8042 and 0.8346, respectively. Tayo 
et al. developed a water quality monitoring system for shrimp aquaculture using WSNs 
combined with conductivity, temperature, and water level sensors, as well as an Arduino nano-
microcontroller.(7) Their test results showed that the implemented sensor nodes can detect the 
real-time conditions of shrimp pond water in terms of both temperature and salinity. Moreover, 
Huy et al. developed WSNs by integrating Raspberry Pi 3 as an embedded computer and XBee 
S2C as wireless communication modules where the system can control the water pump, light 
condition, and actuator by using a web system and several sensors, i.e., a light sensor and a 
temperature sensor.(8) The implementation of the device can increase production efficiency 
through the provided real-time data and remote actuator control, and the systems can 
automatically respond to changes in environmental conditions. In this study, the system built is 
based on WSNs by integrating temperature, pH, and turbidity sensor components and determines 
the condition of fish pond water from these three parameters. The WSN system is integrated 
with deep reinforcement learning (DRL), which generates recommendations through agents 
based on predetermined parameters. Recommendations resulting from the system depend on 
whether the fish pond water conditions are “optimal” or “not optimal”.
	 DRL is a combination of deep learning (DL) and reinforcement learning (RL) and performs 
complex computational processes.(9) In data processing, DRL employs an agent that is integrated 
with DL, which consists of several layers and neurons.(10) The agent processes data on the basis 
of the state given by the environment, then processes it through the learning method mechanism, 
and finally produces output in the form of an action in response to the given initial state 
condition.(11) In this study, the initial state consisted of the temperature, pH, and turbidity 
conditions of the fish pond. Then, the agent receives the initial state in real time and processes 
data through deep neural network modeling. The results of data processing are in the form of 
binary actions, which are recommendations depending on whether the fish pond water 
conditions are optimal or not optimal. Rewards in the DRL system provide feedback to agents 
based on actions that have been taken; in this case, the aim is to enhance new knowledge on 
complex conditions in fish ponds, to be used by agents. Technically, Fig. 1 shows the mechanism 
of data processing on DRL.
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2.	 Materials and Methods

	 This section consists of several subsections on (1) the proposed system, where we describe 
how the elements are linked in the system, (2) the configuration of WSNs, (3) DRL setups, (4) 
hardware and software setups, and (5) the experimental setup.
	
2.1	 Proposed system 

	 The proposed system is shown in Fig. 2. There are four main components, namely, (1) WSNs, 
(2) Firebase Data Cloud, (3) the DRL system, and (4) mobile applications. In WSNs, there are 
several nodes, which are a combination of sensors, Arduino microcontrollers, and WiFi modules. 
WSNs combine pH, temperature, and turbidity sensors; they can also allow more than three 
sensors to be integrated, as indicated by the presence of an “nth-sensor”. Environmental 
conditions consisting of temperature, pH, and turbidity are read by nodes in real time and 
integrated by WSNs. Then, the data are transmitted to the Firebase data cloud real-time data 
storage medium. Firebase receives data from WSNs via the message queuing telemetry transport 
(MQTT) protocol, which is a machine-to-machine communication protocol commonly used in 
IoT devices. The data transmitted to Firebase is then processed through the DRL system with an 
agent as a data processor that determines the action based on the state received. The agent is 
integrated with a deep neural network to produce optimal accuracy in state processing, which 
consists of real-time conditions of temperature, pH, and fish pond turbidity. The processing 
results are translated into actions in the form of “optimal” or “non-optimal” binary conditions. 
The representation of the system is shown by a mobile application where the user can finally see 
how the real-time conditions of the fish pond are based on three parameters along with 
recommendations for fish pond conditions, whether optimal or not optimal.

Fig. 1.	 (Color online) Deep reinforcement learning implemented in the study.
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2.2	 Configuration of WSNs

	 As described in the previous section, WSNs are an integration of several nodes consisting of 
sensors, microcontrollers, and WiFi modules. Several topology configurations can be 
implemented, including the mesh topology used in this study. The mesh topology configuration 
represents the connectivity between nodes.(12) For example, if there are nodes A, B, C, and D, the 
connections built on a mesh topology are node A connected to nodes B, C, and D. Node B is 
connected to nodes A, C, and D, node C is connected to nodes A, B, and D, and node D is 
connected to nodes A, B, and C. All nodes contained in WSNs are interconnected to form a 
mesh topology structure, providing advantages in connection speed, increasing system coverage, 
increasing reliability in data transmission, and allowing nodes to back up each other in case of 
network constraints. Figure 3 shows the mesh topology structure of WSNs in this study.

2.3	 DRL setup

	 DRL is implemented to perform complex computational processing, which is carried out by 
agents integrated with deep learning, or technically through deep neural networks. 
Fundamentally, the DRL formulation refers to the Bellman equation that represents the 
Q-learning modeling that updates the rule in the DRL sequence, as described in Eq. (1).(13)

	 ( ) ( ) ( ) ( )( )  ,        max ,  –,  , Q Qs a Q s a r Q s a s aα γ ′ ′= + + × 	 (1)

	 Q(s, a) is described as a Q-value, which consists of a series of state s consisting of 
temperature, pH, and turbidity, as well as action a, which is the result of a decision from the 

Fig. 2.	 (Color online) Proposed system. 
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agent, which, in this study, is in the form of a binary condition, whether the fish pond is in an 
optimal or non-optimal condition. In this formulation, the Q-value is updated with Q(s, a) plus 
α(r + γ × max Q(sn, an) – Q(s, a)). α shows the learning rate, which represents how big the step 
size is in each update and helps to control the information received by the Q-value. Reward r as 
feedback for the agent every time an action is taken, with the addition of new information in 
each subsequent iteration. γ is a discount value that is in the range of 0 and 1 and serves as a 
multiplier factor in determining r. Q(s', a') is the next state and action after the agent receives 
feedback from r.
	 As described in the equation above, since the model implemented in DRL is Q-Learning, a 
model scenario is needed as an initial state. This model scenario then becomes basic knowledge 
for agents in determining actions. The model scenario, which then becomes the dataset, consists 
of state temperature, pH, and turbidity, as well as action recommendations for pond water 
conditions in the form of “optimal”, represented by the number 1, and “non-optimal”, represented 
by the number 0. The optimal conditions for fish ponds are shown in Table 1, which refers to the 
Food and Agriculture Organization’s warm freshwater fishpond conditions.(14) 
	 The next stage is the development of the dataset, where the total dataset is 2000 data records 
with “optimal” conditions, or class label 1 of 1000 data, and “non-optimal” or class label 0 of 
1000 data. Non-optimal conditions are conditions outside the optimal range shown in Table 1. If 
at least one of the parameters does not meet the optimal range, a non-optimal condition will 
arise. Table 2 shows the dataset developed in this study.
	 After determining the dataset, the next step is to create a training model scenario using a 
deep neural network, which in this study uses five layers consisting of one input layer, three 
hidden layers, and one output layer. The input layer consists of three nodes that represent input 
data consisting of temperature, pH, and turbidity. The output layer is a binary class consisting of 
only one node, which represents binary class label 1 for optimal conditions and class label 0 for 
non-optimal conditions. The formulation used in deep neural networks is shown in Eq. (2).

Fig. 3.	 (Color online) WSN mesh topology.
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	 ( )1 1 2 2 3 3 3 3         z f w x w x w x w x b= + + +…+ + 	 (2)

	 z in the deep neural network formulation shows the final result of the modeling, in which 
there is a combination of input x and weight w. Bias b is used as an additional parameter in 
optimizing the model to generalize new data, which is usually summed after all x and w are 
summed.(15) The activation function f can activate the addition of x and w in the context of the 
nonlinear transformation.(16) In this study, the activation function implemented is the sigmoid, 
which has a range between 0 and 1. The result of the sigmoid is in the form of a trend value, 
where if the resulting output is less than 0.5, then it shows a tendency close to 0, or if it is relevant 
to the dataset, it will refer to class label 0, which is translated as non-optimal conditions. 
Likewise, if the resulting output is equal to or greater than 0.5, then the tendency falls into class 
label 1 or optimal conditions. The sigmoid formulation is represented by Eq. (3).

	 ( ) ( )
1

1 xf x
e −

=
+

	 (3)

	 f(x) denotes the activation function in the input data and is determined as 1 divided by the 
sum of 1 and e, where e is a constant with a value of 2.71838.(17) Sigmoid has the characteristic 
that the resulting values form an S-shaped curve in the range between 0 and 1 and provide a 
smooth result.

Table 1
Warm freshwater fishpond optimal ranges.
No. Parameter Optimal range
1 Temperature 25–30 ℃
2 pH 6–9
3 Turbidity 0–50 NTU

Table 2
The developed dataset.
No. Temperature (℃) pH Turbidity (NTU) Class

1 27 8 10 1
2 30 8 47 1
3 25 4 73 0
4 29 6 3 1
5 14 5 66 0
6 2 2 71 0
7 29 7 50 1
8 29 7 39 1
9 71 8 97 0

10 25 12 51 0
… … … … …

2000 45 14 59 0
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2.4	 Hardware and software setup

	 The hardware components used consist of an Arduino Uno R3 microcontroller, a WiFi 
module (ESP 8266), a temperature sensor (RTD PT 100), a pH sensor (SEN 0161), and a turbidity 
sensor (SEN 0189). Table 3 shows the details of the hardware components used in the system.
	 The software used in the system is Firebase Data Cloud, which is a Google product that 
provides a database system that can be accessed by users in real time. Firebase supports the 
MQTT protocol so that it can be implemented in the WSN configuration.(18) On the user side, the 
software interface is developed on a mobile basis with the Android Studio Integrated 
Development Environment (IDE). The Android Studio IDE is a software development program 
for Android-based applications using the programming languages Java and Kotlin when 
designing interfaces using extensible markup language.

2.5	 Experimental setup

	 Figure 4 shows the experimental setup used in this study. It consists of several parts. The 
initial part is the integration of all the WSN components, which consist of nodes that include 
sensors, microcontroller units, and WiFi modules. Node integration uses a mesh topology where 
nodes are interconnected. In the next stage, WSNs of the system were validated to determine the 
percentage error level of the system. The WSNs were evaluated by comparing the actual 

Table 3
(Color online) Hardware components.
No. Name of component Specification Figure detail

1 Arduino Uno R3

Microcontroller uses ATmega328P, 
which has 14 pinout digital input/

output, 6 analog input pins of 5 and 
3.3 V pin.

2 WiFi module
(ESP 8266)

Pinout: 3V3, Ground (GND), Reset 
(RST), Enable (EN), Serial Transmit 
(TX), Serial Receive (RX), General 
Purpose I/O pin (GPIO1 and GPIO2)

3 Temperature sensor
(RTD PT 100)

Material: PVC, PTFE, silicone 
rubber, glass fiber, and stainless steel

Coverage range: 0–100 ℃
Pinout: VCC, Out, GND

4 pH sensor (SEN 0161)

Coverage range: 0–14 level of pH
Time of response: ≤1 min

Voltage required: 5 V
Pinout: VCC, Out, GND

5 Turbidity sensor
(SEN 0189)

Optimum temperature: 5–90 ℃
Time of response: ≤0.5 min

Voltage required: 5 V
Pinout: 8 pins
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environment’s WSN readings with the results of measurements made with the measurement 
tool. The gap between WSNs and measurement tools becomes a parameter in determining the 
percentage error, and in this study, the percentage error tolerance of the system is a maximum of 
5%. Thus, if there is an error percentage greater than 5%, the stage will be repeated for the 
previous process. The next stage is the analysis of the model implemented in the system by 
applying hyperparameter tuning scenarios to produce the highest accuracy for the model being 
developed. The model with the highest accuracy will be implemented in the DRL system. The 
threshold of the accuracy is greater than 95%. The final stage is a practical experiment using the 
system in a real-world environment to determine the effectiveness and accuracy of the 
aquaculture monitoring system. 

3.	 Results and Discussion

3.1	 Validating the WSNs

	 The WSNs are validated by testing the reading results of WSNs compared with the 
measurement results from a measurement tool, which consists of (1) a digital thermometer for 
measuring the temperature, (2) a pH meter for measuring the pH, and (3) a turbidity meter for 
measuring the turbidity of water. The results of subsequent measurements produce gaps used for 
analysis in determining the percentage error of the WSN set. The data were collected from 6:00 
a.m. to 8:00 p.m. every 2 h, so there were eight data collection times, namely, 6:00 a.m., 8:00 
a.m., 10:00 a.m., noon, 2:00 p.m., 4:00 p.m., 6:00 p.m., and 8:00 p.m. The measurement results of 
the WSN device and measurement tools are shown in Table 4.
	 Table 4 shows differences between the measurement results of the WSN device and 
measurement tools for each parameter. For example, when the temperature was measured at 6:00 
a.m., the result obtained using the WSN device was 24.2 ℃, whereas the temperature measured 
with a thermometer was 23.1 ℃. The absolute difference between the two values, hereinafter 
referred to as the gap, is 1.1 ℃. The largest gap in temperature measurement occurred at 6:00 

Fig. 4.	 Experimental setup.
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a.m. The largest gap in pH was 0.3 at 6:00 p.m.; i.e., the pH measurement results for the WSN 
device and measurement tools were 6.7 and 7.0, respectively. In the case of the turbidity 
measurement results, the largest gap of 2.3 NTU was obtained at 10:00 a.m.; i.e., the WSN 
device and measurement tool results were 19.2 and 21.5, respectively. The next step is to 
calculate the gap with the measurement result as an expected value, then multiply it by 100% to 
produce an error percentage, as in Eq. (4).

	    100%
 

gap resultError Percentage
measurement result

= × 	 (4)

	 The measurement results of error percentage are shown in Table 5, where the average error 
percentages of temperature, pH, and turbidity are 1.82, 1.80, and 6.07%, respectively. Overall, 
the average of the three parameters is 3.23%. The value of 3.23% is less than 5%, which is the 
maximum threshold of error percentage in this study shown in Fig. 4; thus, the WSN device can 
be validated and we progress to the next stage.

3.2	 Implementing the recommended model into DRL system

	 In the context of DRL, modeling is performed by Q-Learning, where scenarios are needed in 
the form of datasets, which become basic knowledge used by agents to make decisions. The 
dataset used in the modeling in this study is the scenario of optimal and non-optimal conditions 
for fish ponds and consists of 2000 data records that are divided into optimal conditions, which 
are represented by 1, and non-optimal conditions, which are represented by 0. The dataset 
consists of (1) state, which is the basic parameter of fish pond conditions (temperature, pH, and 
turbidity), and (2) action in the form of a binary class of optimal and non-optimal conditions. 
Table 6 shows the dataset used in the study.
	 Furthermore, 80% of the dataset is used as training data and 20% as testing data. The data 
training was carried out on a Windows 10 operating system with an Intel® CoreTM i7-10510U 
CPU @ 1.80 GHz and software training data using Jupyter Notebook. Initial parameters in the 

Table 4
Results obtained using WSN device and measurement tools. 

Time
WSN device Measurement tools

Temperature 
(℃) pH Turbidity 

(NTU)
Temperature 

(℃) pH Turbidity 
(NTU)

6:00 a.m. 24.2 6.9 18.8 23.1 6.7 20.2
8:00 a.m. 24.2 7.0 18.7 24.7 7.0 20.3
10.00 a.m. 25.1 7.0 19.2 24.8 7.0 21.5
Noon 26.8 6.9 20.0 26.9 7.1 21.3
2:00 p.m. 26.6 6.9 20.0 26.5 7.0 21.1
4:00 p.m. 24.9 6.9 20.1 25.2 7.0 20.7
6:00 p.m. 24.4 6.7 19.4 23.8 7.0 20.3
8:00 p.m. 24.1 6.9 19.4 23.6 7.0 20.3
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modeling process are a learning rate of 0.0005, hidden layer 1 consisting of 32 neurons, hidden 
layer 2 consisting of 64 neurons, hidden layer 3 consisting of 64 neurons, the input layer 
consisting of 3 features, and the output layer consisting of 2 classes. The experiment was carried 
out by conducting data training, also called a variation of 20 epochs every 10 epochs from epoch 
10 to epoch 200. From the results of the epoch process, the loss was also obtained as an indicator 
of how much error the model produced. The accuracy of the epoch is shown in Fig. 5, and the 
loss for each epoch is shown in Fig. 6.
	 In Fig. 5, it can be seen that epoch 10 has the lowest accuracy of 90.10%, whereas epochs 120, 
140, 170, 180, 190, and 200 have the highest accuracy of 98.80%. At epochs 150 and 160, there 
was an anomaly in the form of a decrease in accuracy to 96.90 and 96.00%, respectively. As 

Table 5
Error percentage (EP) of each parameter.
Time EP of temperature (%) EP of pH (%) EP of turbidity (%)
6:00 a.m. 4.76 2.99 6.93
8:00 a.m. 2.02 0.00 7.88
10:00 a.m. 1.21 0.00 10.70
Noon 0.37 2.82 6.10
2:00 p.m. 0.38 1.43 5.21
4:00 p.m. 1.19 1.43 2.90
6:00 p.m. 2.52 4.29 4.43
8:00 p.m. 2.12 1.43 4.43
Average per parameter 1.82 1.80 6.07
Average EP 3.23

Table 6
Aquaculture monitoring dataset.
ID Temperature pH Turbidity Class

1 27 8 10 1
2 30 8 47 1
3 29 6 3 1
4 29 7 50 1
5 9 9 14 0
6 27 7 22 1
7 25 7 13 1
8 27 8 4 1
9 25 9 23 0

10 3 8 3 0
11 25 8 32 1
12 28 9 7 1
13 15 10 23 0
14 13 11 4 0
15 15 11 8 0
16 27 6 14 1
17 27 7 39 1
18 63 12 92 0
… … … … …

2000 45 14 59 0
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shown in Fig. 6, the highest loss of 0.22 was obtained at epoch 10 and the lowest loss of 0.04 was 
obtained at epochs 170, 180, 190, and 200. On the basis of the results of epoch analysis and the 
value of loss, the optimal point is obtained by looking at the highest accuracy along with the 
lowest value of loss and seeing how effective the memory is used in the epoch process. In this 
case, the optimal epoch is epoch 170, which has the highest accuracy of 98.80% and the lowest 
value of loss of 0.04. The visualization of data distribution based on epoch 170 training can be 
seen in Fig. 7, which shows that the classification is distributed between the optimal class or 1 
(green) and the non-optimal class or 0 (yellow). When observed in more detail, there are only a 
few incorrect data values (red and orange), which in this case represents the value of loss.

3.3	 Practical experiment using aquaculture monitoring system

	 Models that have undergone the training and evaluation process are then integrated into the 
DRL system. To facilitate communication between the user and the system, a user interface that 
includes parameter indicators of temperature, turbidity, and pH for fish pond conditions is 
designed. The results of data analysis are in the form of actions performed by agents on the DRL 
system through the binary classification of conditions indicating whether the pond conditions 
are optimal or not optimal. Figure 8 shows the user interface, wherein the application 
development uses an Android platform that can be easily installed and used by users.

Fig. 5.	 (Color online) Epoch accuracy. 

Fig. 6.	 (Color online) Loss of each epoch.
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	 The DRL system was tested by creating test scenarios. There were 30 test scenarios with 
different variations of temperature, turbidity, and pH, as shown in Table 7. The test scenarios 
contain an expected value and a real value where the expected value is the ideal temperature, 
turbidity, and pH. Moreover, the real value is the real-time measurement result of the aquaculture 
monitoring system. Of the 30 test results, there is one condition that does not match the expected 
value at ID 18. It can be seen that the expected value is “not optimal”, whereas the real value 
indicates “optimal”. This happens because the temperature is close to the specified threshold, 
which is between 25 and 30 ℃, resulting in a bias or misinterpretation between the sensor 
readings and the DRL system. In the experiment, the accuracy percentage is 97%, which results 
from 29 of the correct test results of the aquaculture monitoring system (as shown in the “real 
value” column in Table 7) divided by 30 scenarios of expected values.

Fig. 7.	 (Color online) Visualization of data distribution.

Fig. 8.	 (Color online) User interface of system. (a) Main menu and (b) monitoring menu.

(a) (b)
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4.	 Conclusions

	 In this research, we developed an aquaculture monitoring system that is convenient to users, 
especially fish cultivators. The system was developed by integrating WSNs and DRL systems, 
which produce optimal accuracy. From the validation results of the accuracy of WSNs in 
detecting fish pond conditions using the parameters of temperature, pH, and turbidity, an 
average error percentage of 3.23% was obtained. In contrast, in selecting the model to be 
implemented on the DRL system, the optimal accuracy was obtained at epoch 170 with an 
accuracy of 98.80% and a loss function of 0.04. The experimental results of 30 tests on the 
aquaculture monitoring system device implemented with WSNs and DRL show that an accuracy 
of 97% was obtained. As the next development, we propose that the aquaculture monitoring 
system be integrated with an actuator that can provide a physical response to the fish area, such 
as an actuator to automatically spray feed, or the addition of physical sensors to increase the 
complexity of the aquaculture monitoring system.

Table 7
Experimental results of aquaculture monitoring system.
ID Temperature pH Turbidity Expected value Real value
1 28 6 32 optimal optimal
2 26 9 25 optimal optimal
3 27 6 3 optimal optimal
4 27 8 23 optimal optimal
5 28 7 7 optimal optimal
6 25 7 9 optimal optimal
7 25 6 22 optimal optimal
8 27 7 14 optimal optimal
9 29 8 25 optimal optimal

10 29 9 37 optimal optimal
11 25 6 47 optimal optimal
12 30 8 32 optimal optimal
13 25 6 49 optimal optimal
14 29 7 49 optimal optimal
15 28 9 20 optimal optimal
16 27 2 33 not optimal not optimal
17 25 3 47 not optimal not optimal
18 31 7 40 not optimal optimal
19 16 5 3 not optimal not optimal
20 7 3 45 not optimal not optimal
21 14 2 11 not optimal not optimal
22 19 8 52 not optimal not optimal
23 12 9 79 not optimal not optimal
24 2 8 72 not optimal not optimal
25 12 8 91 not optimal not optimal
26 44 8 17 not optimal not optimal
27 33 7 26 not optimal not optimal
28 25 11 42 not optimal not optimal
29 42 8 92 not optimal not optimal
30 31 7 66 not optimal not optimal
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