
973Sensors and Materials, Vol. 36, No. 3 (2024) 973–987
MYU Tokyo

S & M 3575

*Corresponding author: e-mail: shenhouming1993@163.com 
https://doi.org/10.18494/SAM4554

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Broken Strand Detection of Overhead Ground Wire 
by Image Processing and Morphological Feature Analysis

Shuangyong Zhou,1 Houming Shen,2,3* Jun Chen,1
Jie Chen,1 Linfeng Yu,1 and Xianguo Li1

1State Grid Chongqing Ultra High Voltage Company, Chongqing 400039, China
2NARI GROUP Liability Corporation, State Grid Electric Power Research Institute Liability Corporation,

Nanjing 211106, China
3Wuhan NARI Limited Liability Company, State Grid Electric Power Research Institute,

Wuhan 430074, China

(Received June 16, 2023; accepted September 20, 2023)

Keywords:	 image processing, multithreshold, overhead ground wire, broken strand, 
morphological character, connection area

	 The inspection of overhead ground wires is an important guarantee to ensure the stable 
operation of the power system. The current method of the manual detection of broken strands of 
overhead ground wires is inefficient and prone to misjudgment. For this reason, a detection 
method of overhead ground wire broken strands by image processing and morphological feature 
analysis is proposed. First, the obtained image of the overhead ground wire is preprocessed to 
enhance the wire features. Subsequently, a complete effective binary image of the overhead 
ground line is obtained by combining the method of multithreshold segmentation and 
morphological processing based on the hue saturation value (HSV) color space. Finally, the 
morphological characteristics of the overhead ground connection area are analyzed, and the 
location of the broken strands is detected and marked by taking into account the difference 
between the broken strands and the normal ground. Furthermore, experimental analysis of 
overhead ground wires with complex backgrounds has confirmed that the method has high 
detection accuracy.

1.	 Introduction

	 High-voltage transmission lines play crucial roles in power systems, including transmission, 
regulation, and distribution. They serve as vital arteries of our country’s power grid, ensuring its 
safe and stable operation.(1) The conductors of transmission lines are the essential carriers for 
electrical energy, and their stability and reliability directly impact the overall safety, stability, 
quality, and reliability of power supply by the system.(2) Traditional power line inspections have 
relied on manual methods, which require dedicated personnel and substantial human and 
material resources. However, this approach suffers from inefficiency and limitations. Therefore, 
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it is imperative to study intelligent inspection and identification technologies to address these 
challenges effectively.(3)

	 European and American countries implemented the practical application of unmanned aerial 
vehicle (UAV) inspection systems for transmission lines early on,(4–6) enabling the automatic 
detection of anomalies in power lines. In recent years, China’s power line inspection technology 
has kept pace with international standards, and the use of drones for distribution line inspections 
has become increasingly mature.(7,8) However, currently, even after obtaining images of 
transmission line conductors through inspections, manual observation is still required to detect 
conductor defects and obtain accurate results. This approach not only has low efficiency but is 
also susceptible to subjective factors, leading to less precise detection.(9,10) To improve the 
detection efficiency, an embedded automatic fault detection algorithm based on image 
processing has been designed.(11–13) A method for detecting conductor fractures and surface 
defects in transmission lines using UAVs has also been proposed.(14) This method can be used to 
monitor the health condition of the conductors and ensure the normal operation of the 
transmission lines. To achieve the high-precision detection of obscured insulators in transmission 
lines, You-only-look-once (YOLO) was employed for insulator recognition and localization, 
enabling real-time detection of high-voltage line insulators.(15) In  Ref. 16, a deep-learning-based 
method was proposed for detecting insulator faults in aerial images of high-voltage transmission 
lines. This method is specifically designed to detect insulator faults in aerial images with 
complex backgrounds. By incorporating feature pyramid networks and an improved loss 
function into the cross stage partial dense (CSPD)-YOLO model, the accuracy of insulator fault 
detection is enhanced. Reference 17 describes the implementation of a fault detection system for 
conductor fractures in transmission lines using grayscale variance normalization and average 
intensity methods in OpenCV and Python. In ref. 18, Li et al. reported the first use of UAVs to 
capture images of transmission lines. Then, on the basis of the FCN network, image segmentation 
was performed on the captured images to extract the transmission line information. 
Subsequently, the specific image features of conductor fractures were utilized to extract the 
image features of each sliding window along the axis of the transmission line. This process 
allows for the identification of windows containing abnormal feature parameters, enabling the 
precise detection and localization of conductor fractures in transmission lines.
	 However, in the aforementioned literature, the complexity of the background in aerial ground 
wire images caused by the shooting angle was not fully considered when detecting the broken 
strands of transmission line conductors. Aerial ground wire images often contain low-resolution 
backgrounds such as trees, houses, and roads, which can pose challenges in identifying broken 
wire strands and easily lead to false detections or missed detections. To address this problem, in 
this paper, we propose an aerial ground wire broken strand detection method based on image 
processing and morphological feature analysis. Firstly, the acquired aerial ground wire images 
are preprocessed to enhance the wire features. Then, by combining a multithreshold 
segmentation based on the hue saturation value (HSV) color space and morphological processing 
methods, a binary image of the complete and effective aerial ground wire is obtained. Finally, 
morphological feature analysis is performed on the connected regions of the aerial ground wire, 
taking into consideration the distinguishing features of the broken strand regions and the normal 



Sensors and Materials, Vol. 36, No. 3 (2024)	 975

wire, thus detecting the locations of the broken strands and annotating them. Through 
experimental analysis, the proposed method can overcome the challenges posed by complex 
backgrounds, thereby improving the accuracy and robustness of broken strand detection.

2.	 Overhead Ground Wire Image Preprocessing

	 Because of limitations in the shooting scenes and environments, the acquired overhead line 
images exhibit complex backgrounds and significant noise and speckle interference, which 
adversely affect the segmentation of the ground line regions and the subsequent detection of 
fracture positions. To enhance the accuracy of fracture position detection, it is necessary to 
preprocess the original images to reduce noise interference, thereby improving the stability and 
accuracy of subsequent processing. Common preprocessing measures include image denoising, 
image enhancement, and color model conversion.

2.1	 Image denoising

	 The effect of image capture devices or the surrounding environment may have a negative 
impact on image quality, resulting in the presence of noise in the images. These noise signals 
degrade the quality of the images and may confound useful information, thereby reducing the 
stability and accuracy of image processing. To reduce noise interference during the image 
processing, we employ mean filtering. The principle of mean filtering involves averaging the 
pixel values within a neighborhood region of each pixel in the image to obtain a new pixel value. 
The formula for mean filtering is

	 2

1( , ) ( , )
(2 1)

r r
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i r j r

I x y I x i y j
r =− =−

= + +
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where Ismooth(x, y) represents the filtered pixel value in the image, (x, y) represents the coordinates 
of the pixel point to be subjected to the smoothing filter, I(x + i, y + j) represents the pixel values 
within the neighborhood centered at (x + i, y + j), and r represents the radius of the filter.

2.2	 Threshold segmentation

	 Image segmentation is a crucial step in image processing and also one of the most critical 
tasks. Image segmentation refers to the process of dividing the pixels in an image into several 
distinct sets, with each set representing an entity or background in the image. Thresholding is a 
common method used to convert grayscale images into binary images on the basis of the 
relationship between pixel values and a specified threshold.(19) Essentially, it involves 
transforming the input image f into the output image g, in accordance with the following 
transformation formula:
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where T represents the threshold value. For elements in the target region, g(i, j) = 1 takes on a 
certain value, g(i, j) = 1, whereas for elements in the background, g(i, j) = 0 is assigned.

2.3	 Overhead wire region extraction

	 Effective and accurate segmentation of ground wire regions is crucial for detecting fracture 
positions, and precise segmentation methods are an important focus in the current field of object 
detection. In this study, the challenge in extracting ground wire regions lies in addressing the 
color discrimination issue as overhead wires have a very similar color to insulators, making it 
difficult to differentiate between the two by conventional methods. Moreover, overhead wire 
images often contain sky and forest backgrounds, resulting in rich background colors and 
considerable noise interference, which pose significant difficulties in accurately extracting the 
ground wire regions. Referring to previous research, in this work, we build upon threshold 
segmentation and employ a multithreshold segmentation method based on the HSV color 
space(20,21) to segment candidate target regions. Then, the morphological characteristics of the 
connected components are analyzed to extract the ground wire regions. This method effectively 
addresses the issue of background noise interference with overhead wires and separates them 
from the insulator regions, providing a prerequisite for detecting fracture positions in subsequent 
steps.

2.3.1	 Multithreshold segmentation based on HSV color space

	 The HSV color space consists of three components: hue, saturation, and value. The hue 
component represents the color category, saturation represents the purity of the color, and value 
represents the brightness or darkness of the color. This color space provides a better 
representation of prominent color features, and it is widely utilized in the field of image 
processing. In the conversion from the RGB color space to the HSV color space, the three 
components of HSV are as follows:
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Here, R, G, and B represent the values of the red, green, and blue color channels, respectively. 
“Max” refers to the maximum value among R, G, and B, while “min” refers to the minimum 
value among R, G, and B.
	 Threshold segmentation is one of the most commonly used methods of image segmentation, 
where pixels in an image are classified into different categories on the basis of their grayscale 
values and predetermined threshold values. In the process of overhead power wire area 
segmentation, conventional single-threshold segmentation methods are hindered by the 
interference of background noise from the sky and dense forests, making it challenging to 
accurately extract the overhead power wire regions from complex scenes. To address this issue, 
we propose a multithreshold segmentation method by defining a threshold range to divide the 
pixels into distinct regions, followed by the application of morphological operations to extract 
the overhead power wire areas.
	 The multithreshold segmentation algorithm based on the HSV color space is a method that 
utilizes the hue component to segment the image. The specific steps are as follows.
(1)	Convert the image from the RGB color space to the HSV color space.
(2)	Select an appropriate number of thresholds and determine the range for each threshold based 

on the specific application scenario.
(3)	Perform multithreshold segmentation on the hue component of the HSV color space, dividing 

the image into several regions.
(4)	Calculate the average color value of pixels within each region and merge regions with similar 

color values into a cohesive entity.
(5)	Further process the image using methods such as morphological operations to eliminate noise 

and unnecessary regions.

2.3.2	 Morphological processing-based extraction of ground wire regions.

	 By the multithreshold segmentation method, multiple connected regions can be obtained, 
including conductor regions, insulator regions, overhead ground wire regions, and various small 
interfering areas. Firstly, denoising and closing operations(22) are performed on the segmented 
image to eliminate small noise interference and form large connected regions of interest. Then, 
calculations are performed on all connected regions to filter and extract the overhead ground 
wire regions. The formula for calculating the area of a connected region is
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where A represents the area of the connected region, I(i, j) represents the value (i, j) of a pixel 
point, and n and m represent the width and height of the image, respectively.
	 The principle of this formula is to sum up the values of all pixels within the connected region, 
resulting in the area of the connected region. In this study, by analyzing the overhead ground 
wire images, it was found that the overhead ground wire occupies the largest area, and 
corresponds to the largest connected region in terms of area. By sorting and selecting the largest 
connected region, the overhead ground wire region can be extracted.

2.4	 Morphological processing

	 Morphological processing is an image processing technique that is primarily used for 
processing and analyzing the shapes and structures in an image.(23) Its main purpose is to change 
or enhance features such as shape, size, and orientation in an image to achieve operations such 
as segmentation, noise reduction, and feature extraction. Common morphological processing 
methods include dilation, erosion, open operation, closed operation, gradient operation, top-hat 
operation, and bottom-hat operation.

3.	 Differential Feature Analysis

3.1	 Analysis of broken strand regions

	 Through the analysis of collected aerial wire images containing broken strands, the following 
characteristics of broken strand regions are typically observed.
(1)	When the outer surface of the aerial wire is fractured, broken strands exhibit the convergence 

of several fine wires with different slopes.
(2)	Typically, the broken strands will appear as tiny branches that are limited in length and do 

not span the entire image.
(3)	The pixel gradient and the rotational gradient angle of pixel blocks at the site of broken 

strands undergo changes.
	 A model of broken strands in overhead ground wires, based on the characteristics of broken 
strands in overhead ground wires, is illustrated in Fig. 1.

Fig. 1.	 Broken strand model of overhead ground wire.

Area of
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3.2	 Image gradient and direction

	 The image gradient refers to the rate of change of a pixel in both the x and y directions 
(relative to neighboring pixels). It is a two-dimensional vector composed of two components: the 
change in the x-axis and the change in the y-axis. By calculating these two components, a two-
dimensional vector representing the image gradient of that pixel is obtained. Taking the arctan of 
the vector yields the gradient angle. The gradient of the image function f(x, y) at point (x, y) is a 
vector with magnitude and direction. It can be represented as Gx and Gy, which respectively 
indicate the gradients in the x and y directions. This gradient vector can be expressed as below.

	 ( , ) , ,
T

T

x y
f ff x y G G
x y

 ∂ ∂ ∇ = =    ∂ ∂ 
	 (7)

The magnitude of this vector is given by
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.	 (8)

The direction angle is

	 ( , ) arctan f fx y
y x

φ ∂ ∂
=
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.	 (9)

	 The direction of the gradient is the direction in which the function f(x, y) changes most 
rapidly. Gradient values will be larger at edges in an image. Conversely, when there are relatively 
smooth regions in the image with small changes in grayscale values, the corresponding gradients 
will also be smaller.

3.3	 Detection of broken strands in overhead ground wires

	 As revealed by the analysis above, there are obvious feature differences between broken 
strands and normal ground wires. The detection of broken strands based on the gradient changes 
of the broken strand pixels and the rotation gradient angles of the image blocks can be achieved 
by the following steps.
(1)	Image preprocessing: binary and smoothing processing is applied to the extracted overhead 

ground wires to reduce noise interference.
(2)	Broken strand detection: the binary image of the overhead ground wire pixels is scanned to 

calculate the number of adjacent pixel transitions S using
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where D( j) = f( j) − f( j − 1), ( j = 1, 2, 3, ..., 2h), f( j) means scan column, ( j = 1, 2, 3, ..., 2h).
(3)	Broken strand identification: For each pixel block, the gradient angles of its internal pixels 

are computed. The presence of a broken strand is determined on the basis of the variations in 
the width of the power wire trajectory. The calculation formula is as follows.

	 ( )11 2*
/ 2

j jj j
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d dd d
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r r
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= = 	 (12)

(4)	Broken strand localization: From the calculations performed in steps (2) and (3), the positions 
of broken strands are detected and annotated. The detection formula is as follows.
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4.	 Detection of Broken Strands in Overhead Ground Wires by Image Processing 
and Morphological Feature Analysis

	 The specific process for detecting broken strands in overhead ground wires based on image 
processing and morphological feature analysis includes the following steps and is illustrated in 
Fig. 2.
Step 1: Images of overhead ground wires containing broken strands are collected.
Step 2: Preprocessing is performed on the collected images.
Step 3: A multithreshold segmentation method based on the HSV color space is utilized to obtain 
connected regions containing the overhead ground wires.
Step 4: Connected regions corresponding to the overhead ground wires are selected from the 
candidate regions using morphological processing methods.
Step 5: The characteristic differences between the regions with broken strands and the normal 
sections of the overhead ground wires are analyzed. An algorithm is designed to detect and mark 
the locations of broken strands.
Step 6: The binary image of the overhead ground wires is scanned to determine the presence of 
broken strand regions. If broken strand regions exist, the process proceeds to the next step. If 
there are no broken strand regions, the process terminates directly.
Step 7: The positions of the broken strand regions within the overhead ground wire region are 
identified using Eq. (12).
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Step 8: The locations of the broken strand regions are marked using rectangular bounding boxes 
and annotated as “broken strand”.
Step 9: Detection process concludes.

5.	 Experimental Testing and Analysis of Results

	 To validate the effectiveness and accuracy of the proposed algorithm in the extraction of 
overhead ground wires and detection of broken strand locations, we conducted separate 
investigations for wire extraction and broken strand detection. For the extraction of overhead 
ground wires, a variety of images depicting overhead ground wires from different scenes were 
selected for experimentation. A comparison was made with several commonly used segmentation 
algorithms to verify the effectiveness of the proposed method. Additionally, we performed 
experiments on images containing broken strands of overhead ground wires and provided 
specific implementation cases to evaluate the accuracy of the algorithm in detecting broken 
strand locations.

5.1	 Comparison of different segmentation methods

	 To validate the effectiveness of the proposed method for extracting overhead ground wire 
regions, the proposed method and several mainstream traditional segmentation methods were 
compared. The corresponding results are shown in Figs. 3 to 7. The results indicate that threshold 

Fig. 2.	 Detection process of broken strands of overhead ground wire.
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segmentation(24) and K-means clustering segmentation(25) methods can segment the overhead 
ground wire regions, but they are highly susceptible to background interference and cannot 
differentiate between overhead ground wires and insulators. The multithreshold segmentation 
method based on the HSV color space can effectively distinguish between overhead ground 
wires and insulators with minimal interference from the background. In this study, on the basis 
of the multithreshold segmentation method using the HSV color space, morphological operations 
are applied to the segmented connected regions, resulting in the ideal extraction of overhead 
ground wire regions.

Fig. 3.	 (Color online) Overhead ground wire 
inspection image. 

Fig. 4.	 Threshold segmentation. 

Fig. 5.	 K-means clustering segmentation. Fig. 6.	 Multithreshold segmentation. 

Fig. 7.	 Method proposed in this article. 

(a) (b) (a) (b)

(a) (b) (a) (b)

(a) (b)
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5.2	 Analysis of detection results of broken strands

	 The original overhead ground wire captured in this experiment is shown in Figs. 8(a) and 
8(b). Both images depict the same overhead ground wire captured from different angles and 
include the overhead ground wire, insulators, support structures, conductors, and a forest 
background; the overhead ground wire and insulator regions appear as light gray in color. The 
resolution is 1706×1279 pixels with horizontal and vertical resolutions of 96 dpi for the image in 
Fig. 8(a) and 618×825 pixels  and 96 dpi, respectively, for the image in Fig. 8(b). In both images, 
there is only one area with a broken strand where the conductor splits and converges into several 
small branches. Figures 9(a) and 9(b) display the results of the proposed method. It can be 
observed that the proposed method effectively separates and extracts the overhead ground wire 
region from the background, significantly improving the efficiency of subsequent broken strand 
location detection. Figures 10(a) and 10(b) present the annotated results of broken strand 
locations. By analyzing the differential morphological features between the broken strand area 
and the normal overhead ground wire region, the broken strand area is detected on the basis of 
the variations in pixel gradients and the rotational gradient angles of pixel blocks. The detected 
broken strand areas are then annotated in the original images.
	 Table 1 lists more results of broken strand overhead ground wire inspection. As can be seen 
from Table 1, the broken strand portion of the overhead ground wire can be successfully detected 
by the proposed method.

Fig. 8.	 (Color online) Overhead ground wire 
inspection image. 

Fig. 9.	 Ground wire area extraction.

Fig. 10.	 (Color online) Ground wire area 
marking..

(a) (b)

(a) (b) (a) (b)
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Table 1
(Color online) Results of broken strand overhead ground wire inspection.

Overhead ground wire 
inspection image Ground wire area extraction Ground wire area marking Correct detection

   Yes

   Yes

   Yes

   Yes

   Yes
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Table 1
(continued) (Color online) Results of broken strand overhead ground wire inspection.

Overhead ground wire 
inspection image Ground wire area extraction Ground wire area marking Correct detection

Yes

Yes

Yes

Yes

Yes
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6.	 Conclusions

	 The traditional method of manual inspection can no longer meet the needs resulting from the 
rapid advancement of the power transmission network. The intelligent inspection of overhead 
ground wires represents the future trend. In this article, we proposed an aerial power wire image 
broken strand detection method based on image processing and morphological feature analysis. 
It effectively extracted the overhead ground wire region and, on the basis of the differential 
characteristics between the broken strand and normal sections, utilized the pixel block rotational 
gradient angle variation ratio to diagnose the broken strand location and then annotated it with a 
rectangular box. Experimental results demonstrated that the proposed method can accurately 
diagnose broken strand locations in complex backgrounds, exhibiting excellent precision and 
applicability. By integrating this method with diagnostic equipment, it can effectively address 
the issue of human error in the manual inspection of overhead ground wires and provide 
technical support for their maintenance and repair. In the future, we will try to effectively embed 
deep learning networks into this detection model to better respond to the contextually more 
complex broken-strand detection problems, which may exist in engineering practice.
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