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 In this study, we identified the cognitive parameters of rats with traumatic brain injury (TBI) 
in an eight-arm radial maze and used them for TBI classification through machine learning 
models. A total of 16 cognitive parameters were derived using a sensing trajectory bitmap in the 
eight-arm maze. Of these 16 parameters, five (i.e., short-term memory error, latency, total 
distance, frequency of movement from an arm without food to an arm with food, and frequency 
of entry into the arm on the right after exiting an arm) were selected as representative parameters 
and were input into four machine learning models, namely, support vector machine (SVM), 
decision tree, random forest, and k-nearest neighbor (KNN) models, to classify and compare 
sham rats and rats with TBI. The performance evaluation results for the machine learning 
models revealed that the SVM model had the best performance among the models. Its overall 
accuracy, sensitivity, and area under the receiver operating characteristic curve (AUC) were >85, 
98, and >94%, respectively. At some postsurgical time points, the sensitivity and AUC of the 
SVM model even approached 100%. The random forest and KNN models had satisfactory 
performance on Day 28 postsurgery. Overall, the SVM model had satisfactory performance in 
classifying both mild and severe TBI. Our findings can serve as a reference for future research 
on TBI feature classification.

1. Introduction

 A traumatic brain injury (TBI), also known as a head injury, refers to an injury to the brain 
caused by an external physical impact, such as that from a road traffic accident, fall, or physical 
altercation. Its clinical manifestations are a concussion, a cerebral contusion, and an intracranial 
hemorrhage.(1) Among patients with TBI, 80% have mild TBI.(2) In the early stage of TBI, patients 
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do not experience obvious symptoms; therefore, they often overlook the subsequent effects of the 
injury. In recent years, studies have indicated that TBI is a risk factor for Alzheimer disease(3) 
because TBI shares numerous pathological features with Alzheimer disease, including brain 
amyloidosis, tangled nerve fibers, neuronal synaptic function loss, and cognitive impairment.(4) In 
several studies, basic experiments to assess TBI-related effects on learning and memory in rats 
have been carried out.(5,6) Hence, cognitive assessment instruments for evaluating learning and 
memory and for verifying the effectiveness of related treatments are essential. Our research team 
has recently developed an automated eight-arm radial maze for assessing cognition; this maze 
system considerably simplifies manual observation and recording procedures. In this study, we 
applied machine learning to examine rats’ behavioral characteristics in this eight-arm maze and to 
determine the differences in characteristics between sham rats and rats with TBI.
 The Barnes maze,(7) Y-maze,(8) T-maze,(9) Morris water maze,(10) and radial arm maze(11) are 
commonly used for assessing learning and memory abilities. Among these, the Morris water and 
radial arm mazes are considered the most reliable memory assessment apparatuses, primarily 
because they can be used to detect the hippocampus-dependent learning and memory abilities of 
rats.(12) In a water maze, a standing platform is placed at a point below the water surface, and rats 
are compelled to remember the location of the platform to avoid drowning. In a radial eight-arm 
maze, food is placed at the end of certain arms to determine the spatial memory ability of rats. 
Accordingly, the training time required for a water maze is considerably shorter than that 
required for a radial eight-arm maze. However, in a water maze, experimental results usually 
vary substantially because of differences in rat survival instincts.(13) By contrast, a radial eight-
arm maze can be effectively used to evaluate consistency through repeated testing;(13) the 
derived experimental results for the same pathological characteristic do not vary substantially. 
Accordingly, in this present study, we applied the radial eight-arm maze as the basic testing tool 
to assess the spatial learning and memory abilities and cognitive behavioral characteristics of 
rats with TBI.
 Machine learning is a family of algorithms often used to solve classification problems.(14) 
Such algorithms reveal patterns through an automatic analysis of data and through learning. 
Predictions about unknown data are then made according to these revealed patterns. Machine 
learning classification models can be roughly divided into linear and nonlinear models. Linear 
models can handle only simple classification problems; therefore, most studies have instead 
employed nonlinear models to solve relatively complex problems. For example, deep learning 
has been applied for classifying and tracking multiple animal species.(15) Crisler et al. used a 
support vector machine (SVM) model to integrate electrocorticographic signals to identify 
different stages of sleep in rats.(16) By using hemodynamic, cardiac function, and blood gas 
parameters, Lucas et al. established a logistic regression model for predicting recovery from 
hemorrhagic shock.(17) Lysenko-Martin et al. processed age and concussion data using three-
dimensional multiple-object tracking and constructed a decision tree to assess patients’ 
concussion status.(18) Haveman et al. applied a random forest model to analyze 
electroencephalographic signals in order to predict the outcome of patients with moderate to 
severe TBI.(19) Othman et al. employed a k-nearest neighbor (KNN) algorithm along with near-
infrared spectroscopy and electroencephalography to identify acute brain injury in patients.(20)
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 Various machine learning models have been reported to have high accuracy in medical 
decision-making applications.(21,22) Studies have revealed that machine learning can be divided 
into two stages. In the first stage, relevant machine learning parameters are determined; these 
parameters are typically related to the final assessment objective. In the second stage, training 
and verification are performed. In this present study, we executed a basic experiment to observe 
and analyze cognitive parameters of rats in the eight-arm maze, and we determined the 
differences between sham rats and rats with TBI using machine learning classification models. 
On the basis of the classification results, we consider that our study approach and findings can 
serve as a reference for determining TBI symptoms in the future.

2. Materials and Methods

 The procedures for examining the cognitive parameters of the rats in the eight-arm maze are 
illustrated in Fig. 1. We used our eight-arm maze system to locate and identify the experimental 
rats. During the experiment, the coordinates of all the rats were noted in an Excel file in 
chronological order and could be presented as a trajectory bitmap. The cognitive parameters 
could be obtained using the trajectory bitmap with time information. In addition to conventional 
parameters, such as long-term memory errors, short-term memory errors, and latency, we 
calculated the number of arm-to-arm selections (i.e., the number of times a rat moved between 
arms) and further classified these selections in accordance with whether the arms selected did or 
did not have food. The number of direction choices that a rat made after exiting an arm was also 
calculated. Cognitive parameters with greater differences were selected and input into machine 
learning models to classify sham rats and rats with TBI.

Fig. 1. (Color online) Processing procedures for examining rodents’ cognitive parameters in the eight-arm maze.
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2.1 Cognitive parameters of rats in eight-arm maze

 On the basis of the sensing trajectory data derived in the eight-arm maze, we obtained 16 
cognitive parameters (Table 1) that could be divided into two types: those related to direction 
and those unrelated to direction. The parameters unrelated to direction were total distance, 
average speed, and percentage of time spent in each area. The parameters related to direction 
mostly pertained to search strategies, such as the arm-to-arm selections and the direction choice 
after exiting an arm.

2.2	 Machine	learning	classification	model

 To classify sham rats and rats with TBI, we applied four commonly used supervised learning 
models, namely, SVM, decision tree, random forest, and KNN models. Each model is described 
as follows.

Table 1
Explanations of the cognitive parameters.
Cognitive parameters Explanation
Direction-irrelevant parameters:
1. Long-term memory error (number of times) Number of times  rats enter an arm without food 
2. Short-term memory error (number of times) Number of times  rats reenter an arm 
3. Latency (s) Total time spent in entering all four arms with food
4. Total distance (cm) Total distance walked throughout the experiment
5. Average speed (cm/s) Total distance/latency
6. Percentage of time spent in the central area 

(%)
Total time spent in the central area/latency 

7. Percentage of time spent in arms with food 
(%)

Total time spent in the arms with food/latency

8. Percentage of time spent in arms without 
food (%)

Total time spent in the arms without food/latency 

Direction-relevant parameters:
9. Moving from an arm with food to another 

arm with food (number of times) 
Number of times a rat moved from an arm with food to another 
arm with food following the arm entrance order

10. Moving from an arm with food to an arm 
without food (number of times) 

Number of times a rat moved from an arm with food to an arm 
without food following the arm entrance order

11. Moving from an arm without food to an 
arm with food (number of times) 

Number of times a rat moved from an arm without food to an 
arm with food following the arm entrance order

12. Moving from an arm without food to 
another arm without food (number of times) 

Number of times a rat moved from an arm without food to 
another arm without food following the arm entrance order 

13. Reentering the exit arm (number of times) Number of times a rat reentered an arm after exiting the same 
arm following the arm entrance order

14. Entering the arm on the left (number of 
times) 

Number of times a rat entered the arm on the left after exiting 
an arm following the arm entrance order

15. Entering the arm on the right (number of 
times) 

Number of times a rat entered the arm on the right after exiting 
an arm following the arm entrance order

16. Entering the arm opposite the front arm 
(number of times) 

Number of times a rat entered the arm opposite the arm it 
exited following the arm entrance order
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2.2.1 SVM model

 An SVM model maps data points onto a high-dimensional plane and then identifies a 
hyperplane that both separates two different data samples and maximizes their distance from the 
hyperplane (Fig. 2). In a high-dimensional cube, the hyperplane can be considered as a linearly 
separable, two-dimensional plane. In Fig. 2, the red line that completely separates the two data 
samples is the segmentation hyperplane. An SVM model can identify the optimal segmentation 
hyperplane, maximize the distance of data samples from the margin, and obtain a maximum 
margin.
 To identify the optimal segmentation hyperplane, we can define the equation of the red line 
in Fig. 3 as ax + by + c = 0 and convert it into matrix form as follows: wTx + b = 0. This equation 
serves as the equation of the hyperplane. Because the objective of the SVM model is to solve a 
classification problem, we can define the equation of one of the dotted lines as wTx + b – k = 0 
and that of the other dotted line as wTx + b + k = 0, where k is an arbitrary constant. These two 
equations can be combined to obtain y(wTx + b) ≥ k.
 Subsequently, the vectors X1 and X2 can be projected onto the plane W (Fig. 4), and the 
boundary length can be derived, as indicated in Eq. (1).

 1 2Margin w x x k
w w

⋅ −
= =

��������

� �   (1)

 A mapping function must be used to convert low-dimensional coordinates into high-
dimensional ones. Accordingly, we used a sigmoid function for conversion.

2.2.2 Decision tree model

 A decision tree is a tree-structured algorithm that typically contains three components: a root 
node, internal nodes, and leaf nodes. In accordance with the concept of a tree structure, 
beginning from the root node, each internal node represents a feature. The data cluster is divided 

Fig. 2. (Color online) Mapping the coordinate plane 
onto the hyperplane.

Fig. 3. (Color online) Equation of the segmentation 
hyperplane.
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into two components by each internal node. These components are further divided into other 
branches until each data point is classified.  
 In a decision tree, feature selection is based on information gain (IG). IG is the quantity of 
data that a feature contributes to the classification system, and a higher IG can generate a more 
satisfactory decision-making result. A feature with a larger quantity of information is more 
important than other features. 
 Equation (2) presents the IG equation, where Info(Dp) is the original amount of information, 
InfoA(Dp) is the amount of information after segmentation, and m is the number of segmentations. 
Equation (3) presents the binary classification model (m = 2).

 ( ) ( ) ( ) ( ) ( )
1

IG
m

j
p p A p p j

pj

N
D Info D Info D Info D Info D

N=

= − = −∑  (2)

 ( ) ( ) ( ) ( )IG left right
p p left right

p p

N N
D Info D Info D Info D

N N
= − −  (3)

 Entropy and Gini impurity are commonly applied to calculate the amount of information. In 
this study, we employed entropy for calculation, as presented in Eq. (4), where K is the number of 
categories a data sample should be divided into and Pk is the score of a category.

 2
1

log
K

H k k
k

Info P P
=

= −∑  (4)

2.2.3 Random forest model

 A random forest is formed by multiple randomly created classification and regression trees. 
Each decision tree has an independent decision-making process, and the final output result is 
selected through majority voting or averaging. Decision trees that differ considerably from other 

Fig. 4. (Color online) Calculation of the maximum margin.
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trees are required for calculation; therefore, different data sets should be produced. The most 
common methods of generating trees with large differences are bagging (bootstrap aggregation) 
and boosting. 
 We adopted bagging in this study. We randomly retrieved z samples from the original data 
samples. After each sampling, z classifiers (trees) were produced. Subsequently, the retrieved 
samples were returned to the original data population. Although trees shared some samples, the 
trained classifiers (trees) differed from each other overall. The final classifier (tree) was obtained 
through voting.

2.2.4 KNN model

 In a KNN model, each new data point is compared with its “neighbors” within an area. The 
data point is then classified into the most common category among the categories of its 
neighbors. KNN classification involves the following steps.
1. Calculate the distance between the new data point and the training set data points.
2. Determine the k data points with the shortest distance to the new data point.
3. Categorize the new data points by a majority vote among the k nearest neighbors.
 Numerous methods are available for distance estimation; among these, the Euclidean distance 
and Manhattan distance are the most commonly applied methods. In this study, the Euclidean 
distance was used and can be expressed as

 ( ) ( )2 2
 2 1 2 1 .EuclideanD x x y y= − + −  (5)

2.3 Evaluation indices for machine learning

 The most commonly used indices for evaluating machine learning classification models are a 
confusion matrix, the receiver operating characteristic (ROC) curve, and Cohen’s kappa.

2.3.1 Confusion matrix

 A confusion matrix is used to evaluate the predictive performance of a classifier on the basis 
of the number of positive (correct) and negative (incorrect) prediction results. Therefore, four 
conditions exist, as shown in Table 2.
 On the basis of the confusion matrix, several evaluation indices for classification models have 
been developed, as follows.

Table 2
Confusion matrix.

Actual condition
Positive Negative

Predict condition Positive True positive (TP) False positive (FP)
Negative False negative (FN) True negative (TN)
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• Accuracy: Percentage of correct predictions in the overall data set, as shown by Eq. (6).

 Accuracy = (TP + TN)/(TP + FP + TN + FN) (6)

• True-positive rate: Actual rate of positives (i.e., diseased) detected by the model, also referred 
to as sensitivity or recall, as indicated by Eq. (7).

 Sensitivity = TP/(TP + FN) (7)

• True-negative rate: Actual rate of negatives (i.e., not diseased) detected by the model, also 
referred to as specificity, as indicated by Eq. (8).

 Specificity = TN/(TN + FP) (8)

• Positive predictive value: Ratio of true disease predictions to all disease predictions, also 
referred to as precision, as indicated by Eq. (9).

 Precision = TP/(TP + FP) (9)

• Negative predictive value (NPV): Ratio of false nondiseased predictions to all nondiseased 
predictions, as indicated by Eq. (10).

 NPV = TN/(FN + TN) (10)

2.3.2 ROC curve analysis

 An ROC curve is a visual analytic tool, and its horizontal axis represents specificity, whereas 
its vertical axis represents sensitivity, as illustrated in Fig. 5.
 In binary classification, the output of each classification is likely to indicate the probability of 
a classification rather than directly outputting values of 0 or 1. An ROC curve is a plot of the 

Fig. 5. (Color online) ROC curve.
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sensitivity of results against the specificity of results. Through the modification of a threshold 
value for classifying an output value between 0 and 1 as true, the true-positive rate can be 
modified. Threshold values associated with higher true-positive rates result in ROC curves 
further from the diagonal line (i.e., the line representing random guessing); thus, the area under 
the ROC curve (AUC) is greater for models with higher classification performance. An AUC 
value of ≥0.8 suggests higher accuracy and greater authenticity.

2.3.3 Cohen’s kappa

 Cohen’s kappa is a measure of the consistency and reliability of ratings provided by two 
raters on the same topic. If the raters have high consistency, the rating results are sufficiently 
reliable. 
 Cohen’s kappa can be used to evaluate multivariate classification models. An example in 
matrix form is presented in Table 3. Each item represents the number of classifications of each 
type as a percentage; that is, C21 represents the number of predictions that an item in Class 2 is 
predicted as being in Class 1 divided by the total number of predictions. Summing the elements 
along the diagonal results in the observational consistency P0, that is, the probability of a correct 
prediction. Pc is the expected consistency—representing the probability of random guessing—
and is calculated by multiplying the total number of items in a class by the total number of 
predictions for that class (i.e., SA1 × SP1 for Class 1 in Table 3) and summing these terms across 
all classes. Thus, the ratio of P0 – Pc to 1 – Pc represents the performance of the model compared 
with that of a model with a perfect observational consistency of 1; this ratio is Cohen’s kappa. 
Cohen’s kappa ranges between –1 and 1, and higher values imply better consistency. Typically, a 
value of >0.75 suggests excellent consistency.

2.4 Experimental process

 In our memory assessment experiment conducted in the eight-arm maze, the rats were 
subjected to two weeks of early-stage training five days per week before surgery. The first week 
was the adaptation phase, which was divided into two stages. In the first two days, no food was 
placed in the eight-arm maze [Fig. 6(a)]. The rats were allowed to walk freely in the maze for 

Table 3
Application matrix for Cohen’s kappa.

Actual condition SumClass 1 Class 2 Class 3

Predict condition
Class 1 C11 C21 C31 SP1
Class 2 C12 C22 C32 SP2
Class 3 C13 C23 C33 SP3

Sum SA1 SA2 SA3 Total

( )
( )

( ) ( )
( )

0 11 22 33 1 1 2 2 3 3

1 1 2 2 3 3
K     

1 1
c A P A P A P

c A P A P A P

P P C C C S S S S S S
P S S S S S S
− + + − + +

= =
− − + +

(11)
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5 min to adapt to the maze environment. In the subsequent three days, food was placed at the 
end of all arms [Fig. 6(b)] to teach the rats to expect and search for food in the maze. The white 
dots in Fig. 6 indicate the food placements. The second week was the training phase. During this 
phase, food was placed only at the ends of the four designated arms [Fig. 6(c)]. The training 
ended after the rats walked through the four arms with food.
 On the last day in the training phase, a formal maze test was conducted. Surgery was 
performed on the next day. Maze tests were conducted on Days 7, 14, and 28 after surgery to 
investigate the rats’ memory ability. The testing method was the same as that in the training 
phase. After the rats walked through the four arms with food, the timer was stopped immediately, 
as illustrated in Fig. 7. The animal trials and TBI surgery were both conducted at Chi Mei 
Medical Center and approved by the relevant Animal Ethics Committee.

3. Results

3.1	 Quantified	cognitive	parameters

 The statistical analysis results for all experimental parameters are presented in Table 4. We 
observed that for the parameters unrelated to direction, the two groups (i.e., sham rats and rats 
with TBI) differed significantly in terms of the number of short-term memory errors. The 
number of errors in the TBI group exhibited an increasing trend. The latency of the two groups 
did not differ considerably on Day 7; however, statistically significant differences were evident 
on Day 14. The latency of the TBI group increased with time. After surgery, the walking 

Fig. 7. (Color online) Experimental process in eight-arm maze.

Fig. 6. Food placements in the eight-arm maze before surgery.
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Table 4
Statistical analysis results for cognitive parameters. 
Cognitive parameters Time points Sham (n = 8) TBI (n = 8)
Direction-irrelevant parameters:

Long-term memory error (times)
Day 7 post-surgery 2.7 ± 0.8 3.08 ± 0.3
Day 14 post-surgery 2.7 ± 0.9 3.62 ± 0.4
Day 28 post-surgery 2.9 ± 0.4 4.00 ± 0.0*

Short-term memory error (times)
Day 7 post-surgery 1.1 ± 0.7 4.0 ± 2.0*
Day 14 post-surgery 1.2 ± 0.4 4.2 ± 1.7*
Day 28 post-surgery 2.3 ± 1.4 7.6 ± 3.3*

Latency (s)
Day 7 post-surgery 153.1 ± 29.3 170.8 ± 57.1
Day 14 post-surgery 117 ± 26.3 247 ± 83.3*
Day 28 post-surgery 171 ± 57.9 490 ± 374.4*

Total distance (cm) 
Day 7 post-surgery 1433.6 ± 526.3 2225.4 ± 742.7*
Day 14 post-surgery 1531.8 ± 550.4 2642.0 ± 802.9*
Day 28 post-surgery 1807.9 ± 479.3 3337.6 ± 1396.5*

Average speed (cm/s)
Day 7 post-surgery 9.4 ± 2.8 16.2 ± 4.7*
Day 14 post-surgery 12.9 ± 3.0 10.2 ± 2.5
Day 28 post-surgery 11.0 ± 2.7 8.4 ± 2.6

Percentage of time spent in the central 
area (%)

Day 7 post-surgery 54 ± 17 36 ± 10*
Day 14 post-surgery 56 ± 15 46 ± 17
Day 28 post-surgery 56 ± 8 40 ± 17*

Percentage of time spent in arms with 
food (%)

Day 7 post-surgery 17 ± 6 32 ± 8*
Day 14 post-surgery 23 ± 13 29 ± 13
Day 28 post-surgery 21 ± 7 29 ± 10

Percentage of time spent in arms 
without food (%)

Day 7 post-surgery 29 ± 14 32 ± 9
Day 14 post-surgery 21 ± 9 25 ± 10
Day 28 post-surgery 23 ± 8 31 ± 11

Direction-relevant parameters: 
Moving from an arm with food to 
another arm with food (number of 
times)

Day 7 post-surgery 1.25 ± 0.8 1.8 ± 0.6
Day 14 post-surgery 1.62 ± 0.9 1.8 ± 1.1
Day 28 post-surgery 2.12 ± 1.0 1.5 ± 1.3

Moving from an arm with food to an 
arm without food (number of times)

Day 7 post-surgery 2.25 ± 0.9 3.0 ± 0.8
Day 14 post-surgery 2.00 ± 0.8 3.6 ± 0.8*
Day 28 post-surgery 2.12 ± 0.3 4.7 ± 1.5*

Moving from an arm without food to 
an arm with food (number of times)

Day 7 post-surgery 2.6 ± 0.9 3.6 ± 0.8
Day 14 post-surgery 2.5 ± 1.0 4.0 ± 0.8*
Day 28 post-surgery 2.7 ± 0.6 5.3 ± 2.1*

Moving from an arm without food to 
another arm without food (number of 
times)

Day 7 post-surgery 1.2 ± 0.8 1.8 ± 0.6
Day 14 post-surgery 1.6 ± 0.9 1.8 ± 1.1
Day 28 post-surgery 2.1 ± 1.0 1.5 ± 1.3

Reentering the front arm (number of 
times)

Day 7 post-surgery 0.0 ± 0.0 0.0 ± 0.0
Day 14 post-surgery 0.0 ± 0.0 0.0 ± 0.0
Day 28 post-surgery 0.0 ± 0.0 0.8 ± 0.6*

Entering the arm on the left (number 
of times)

Day 7 post-surgery 4.0 ± 1.9 3.3 ± 2.1
Day 14 post-surgery 3.6 ± 2.4 4.0 ± 2.1
Day 28 post-surgery 4.5 ± 2.7 3.5 ± 1.9

Entering the arm on the right (number 
of times)

Day 7 post-surgery 2.3 ± 2.2 6.7 ± 3.3*
Day 14 post-surgery 2.5 ± 2.4 8.1 ± 1.9*
Day 28 post-surgery 3.3 ± 1.6 9.3 ± 3.0*

Entering the arm opposite to the front 
arm (number of times)

Day 7 post-surgery 0.5 ± 0.5 0.7 ± 1.3
Day 14 post-surgery 0.8 ± 0.6 0.7 ± 1.0
Day 28 post-surgery 1.1 ± 1.0 0.8 ± 1.7

Values are means ± S.D. Student’s t-test was used to compare variables for two groups. 
*p < 0.05 indicated statistical significance compared with the sham group.
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distance of the TBI group at each time point was significantly farther than that of the sham 
group. 
 For the parameters related to direction, we observed that the rats most frequently moved from 
“an arm with food to an arm without food” and “from an arm without food to an arm with food”, 
and these movements thus constituted the most frequent movement types. The frequencies of 
these movements differed significantly between the two groups on Days 14 and 28. For all tests 
after surgery, the rats in the TBI group more frequently entered the arm on the right after exiting 
from an arm. 
 On the basis of the preceding statistical analysis results, we selected five parameters (i.e., 
short-term memory error, latency, total distance, frequency of movement to the arms with food, 
and frequency of movement to the arm on the right) as the feature parameters for machine 
learning model training.

3.2 Analytical results for machine learning

 The experimental data for the sham group and the TBI group were collected. Data were 
collected at three time points after surgery (Days 7, 14, and 28) for each group, and eight data 
values were collected at each time point (one for each rat); thus, a total of 48 data values were 
obtained. The data were partitioned into a training set and a test set at a 6:4 ratio. The training 
set was input into the four classification models for training. After the training was completed, 
we employed six evaluation indices to analyze the quality of the models in the experiment. 
 The equipment used for machine learning model training was an Acer Veriton M4640G host 
with an Intel Core i5-6500 CPU at 3.20 GHz and Micron Crucial 8 GB DDR4-2400 RAM. The 
programming language used was Python 3.7.4. The Scikit-learn machine learning library was 
used for machine learning model training and testing. This library was developed using Python 
and includes many classification and regression models.

3.2.1	 Evaluation	of	overall	classification	effectiveness

 Table 5 presents the evaluation results regarding the overall performance of the four machine 
learning classification models. The data were partitioned randomly at a 6:4 ratio. Partitioning 
was conducted six times, and the results of the six partitioning procedures were averaged. 
Among the models, the SVM model had the best accuracy, sensitivity, AUC, and Cohen’s kappa, 
whereas the random forest model had the best performance in terms of specificity and accuracy.

3.2.2	 Classification	evaluation	at	different	time	points

 The classification performance of each of the models was investigated at the three 
postsurgical time points, as shown in Table 6. We collected eight pieces of data for both the sham 
and TBI groups (comprising a data set with 16 data values) for each time point. The data set was 
partitioned into a training set and a test set at a 6:4 ratio and input into the four machine learning 
models. After six independent training iterations, the mean values were recorded. 
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 The sensitivity and AUC values for the SVM model at the three postsurgical time points were 
substantially superior to those obtained for the other models; some values approached 100%. 
The SVM model also exhibited satisfactory performance in accuracy, specificity, precision, and 
Cohen’s kappa. Thus, the SVM model had excellent performance in classifying TBI at different 
severity levels. On Day 28, the AUC for the random forest model reached 100%, and its 
sensitivity was >90%. For the data collected on Days 14 and 28, the sensitivity of the KNN 
model also reached 100%, and its AUC values at all three time points were between 90 and 95%.

4. Discussion

 We quantified 16 cognitive parameters on the basis of rats’ trajectory points in the eight-arm 
maze and selected five representative TBI feature parameters for machine learning model 
training. Among the five parameters, three were unrelated to direction and two were related to 
direction. The analysis results for the three direction-unrelated parameters imply that the rats 
with TBI were likely to have forgotten their previous movement trajectories and destinations, 
increasing their searching time and total walking distance. The analysis results for the direction-
related parameters reveal that the frequency of rats with TBI entering the arm on the right after 
exiting an arm increased with time postsurgery; this frequency differed significantly from that 

Table 5
Evaluation results regarding the performance of the four machine learning classification models. 
Model Evaluation indices Mean ± standard deviation

SVM

Accuracy 0.850 ± 0.03
Sensitivity 0.983 ± 0.04
Specificity 0.762 ± 0.07
Precision 0.737 ± 0.04

AUC 0.940 ± 0.03
Cohen's kappa 0.702 ± 0.05

Decision tree

Accuracy 0.750 ± 0.03
Sensitivity 0.812 ± 0.09
Specificity 0.705 ± 0.07
Precision 0.650 ± 0.04

AUC 0.758 ± 0.03
Cohen's kappa 0.495 ± 0.06

Random forest

Accuracy 0.842 ± 0.04
Sensitivity 0.875 ± 0.06
Specificity 0.822 ± 0.08
Precision 0.768 ± 0.10

AUC 0.913 ± 0.03
Cohen's kappa 0.675 ± 0.10

KNN

Accuracy 0.758 ± 0.05
Sensitivity 0.897 ± 0.05
Specificity 0.670 ± 0.09
Precision 0.645 ± 0.10

AUC 0.888 ± 0.03
Cohen's kappa 0.527 ± 0.10
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observed in the sham group. This might reveal a behavioral characteristic in the movements of 
patients with TBI.
 We applied four machine learning models to evaluate and compare the five cognitive 
parameters of the rats with TBI. The SVM model had a fairly favorable performance in the 
entire experiment and at individual time points. Accordingly, the SVM model was determined to 
be the most suitable choice for our experiment. The sensitivity and AUC values derived for the 
random forest and KNN models on Day 28 after surgery were both favorable, indicating that the 
two models exhibited satisfactory performance in classifying severe TBI. The decision tree 
model had the poorest performance among the four models. A possible reason is that it only had 
one decision-maker. Its classification results were unstable. A completely different tree could be 
created for each new variable. Regarding the six model evaluation indices, the specificity and 
precision of the four models were relatively low. Therefore, the models had poor performance in 
terms of making positive predictions and identifying negative features. Therefore, when the data 
features were insufficiently clear, the models were highly likely to classify the data as positive.
 Symptoms of mild TBI are not obvious. However, the performance of the TBI group with 
respect to the various cognitive parameters differed from that of the sham group over time. This 
result is consistent with those of most studies in the relevant literature. For the four models, the 

Table 6
Means of the five evaluation indices for the models at the three time points. 

Model Evaluation indices
On the 7th day after 
surgery (including 
standard deviation)

On the 14th day after 
surgery (including 
standard deviation)

On the 28th day after 
surgery (including 
standard deviation)

SVM

Accuracy 0.81 ± 0.07 0.86 ± 0.08 0.91 ± 0.16
Sensitivity 0.96 ± 0.09 1.00 ± 0.00 1.00 ± 0.00
Specificity 0.71 ± 0.11 0.76 ± 0.12 0.89 ± 0.23
Precision 0.71 ± 0.15 0.74 ± 0.15 0.85 ± 0.23

AUC 0.99 ± 0.03 0.99 ± 0.03 1.00 ± 0.00
Cohen's kappa 0.75 ± 0.14 0.81 ± 0.16 0.85 ± 0.28

Decision tree

Accuracy 0.71 ± 0.18 0.71 ± 0.12 0.71 ± 0.08
Sensitivity 0.62 ± 0.30 0.75 ± 0.38 0.74 ± 0.21
Specificity 0.66 ± 0.30 0.71± 0.19 0.87 ± 0.07
Precision 0.54 ± 0.25 0.64 ± 0.27 0.84 ± 0.10

AUC 0.71 ± 0.14 0.72 ± 0.13 0.75 ± 0.10
Cohen's kappa 0.39 ± 0.30 0.41 ± 0.27 0.48 ± 0.17

Random forest

Accuracy 0.76 ± 0.23 0.78 ± 0.11 0.81 ± 0.16
Sensitivity 0.88 ± 0.28 0.96 ± 0.09 0.92 ± 0.19
Specificity 0.64 ± 0.29 0.75 ± 0.12 0.83 ± 0.26
Precision 0.66 ± 0.26 0.75 ± 0.15 0.83 ± 0.26

AUC 0.91 ± 0.03 0.99 ± 0.07 1.00 ± 0.00
Cohen's kappa 0.55 ± 0.37 0.61 ± 0.17 0.67 ± 0.28

KNN

Accuracy 0.79 ± 0.10 0.81 ± 0.11 0.83 ± 0.21
Sensitivity 0.88 ± 0.19 1.00 ± 0.00 1.00 ± 0.00
Specificity 0.64 ± 0.15 0.72 ± 0.12 0.86 ± 0.31
Precision 0.67 ± 0.19 0.74 ± 0.16 0.82 ± 0.27

AUC 0.90 ± 0.06 0.93 ± 0.04 0.95 ± 0.08
Cohen's kappa 0.60 ± 0.18 0.67± 0.17 0.68 ± 0.34
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classification results obtained on Day 28 typically were superior to those obtained at the previous 
two time points. This result verifies that the severity of dementia increases over time. 
Accordingly, the early detection of the signs of dementia can enable the early treatment of the 
disease and thus improve the treatment effectiveness. However, the obtained results reveal that 
only the SVM model had satisfactory classification performance in the early stage of the disease.
 Feature parameters for machine learning training are key factors affecting the final accuracy 
of models. Therefore, parameter selection markedly affects classification success. Parameter 
selection was particularly crucial in this study because the sample size was small. Conventionally, 
only three parameters are used for an eight-arm maze. To increase accuracy and compensate for 
the data insufficiency in this study, we included multiple additional parameters. Data variety can 
affect classification results, and different models have individual strengths. Hence, we increased 
data variety, applied different machine learning models for analysis and comparison, and 
selected the most suitable classification model. The SVM model attained a satisfactory level of 
reliability and objectivity.

5. Conclusions

 We identified five representative cognitive parameters for TBI by using an animal maze and 
revealed differences between sham rats and rats with TBI. Among the four models used in this 
study, the SVM model had the highest performance. Its sensitivity and AUC reached 98 and 
>94%, respectively. These values even approached 100% at some time points. These results 
indicate that this model has excellent performance for TBI classification. Our findings can serve 
as a reference for identifying patients with TBI in the future.
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