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 In this study, we focus on the gas sensor array with semiconductor and neural network 
applications. Two different sensing membranes, namely, diluted conductive water-soluble carbon 
glue and polymer-carbon glue stacked membranes, were used for experiments to compare the 
differences and correlations between multiple polymers and multiple gases. In the experiments, 
the reactions of 13 different polymers with five gases (air, ethanol, CO, NO2, and NH3) were 
tested. A set of sixteen array sensors with a line width of 50 µm and a sensing diameter of 3 mm 
were used, and such sensors were coated with a 300-nm-thick aluminum-doped zinc oxide 
(AZO) layer on the wafer surface. The gas sensitivity obtained using various polymers dripped 
on the sensing area was tested, and the sensitivity of small low-energy heterogeneous gas-
sensing elements is discussed. It is concluded that the various gases considered have good 
separation properties and excellent selectivity and reproducibility. Among the two different 
sensing membranes, the gas reaction ratio of (ΔR/R)max = 149% is the most prominent relative to 
the resistance of carbon glue in reference to the air baseline; as a result, the carbon membrane 
showed a higher gas sensitivity than the polymer-carbon membrane.

1. Introduction

 In recent years, electronic nose systems have been miniaturized to reduce manufacturing 
costs and provide higher precision gas sensitivity and specificity than in the past decade.(1) The 
sensing material triggers a physical reaction with an absorbed analyte and then changes its 
resistivity or dielectric constant. The concentration of the analyte can be determined from the 
property variation.(2) During the detection process, gas sensors based on metal oxides will 
inevitably be cross-contaminated by interfering gases. It has been considered that by using 
sensor arrays with different characteristics, gas recognition results can be improved, which is a 
potential solution to this problem.(3,4)

 Polymer-based sensing materials are usually fabricated in the form of membranes. In addition 
to excellent adaptability with microstructure sensors, membrane sensors can also enhance the 
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adsorption and desorption capabilities of aerosols, improving sensor sensitivity and rapid reuse 
capabilities.(5) The conductive carbon glue and polymer stacked sensor used in this study are 
simple to operate, and the solution drop-casting process can be used to easily control the quality 
of the sensing membrane. Carbon structural materials have unique physical properties, such as 
excellent corrosion resistance and outstanding electronic conductivity. These properties make 
them suitable for use as carriers for electrodes or electrode catalysts. Carbon materials, which 
are used with various gases, have been ideal for high-sensitivity gas sensors.
 Depending on the different gases and their concentrations, sensors in the array will show 
various changes in resistance due to physical mechanisms. Sorting can select polymer sensing 
materials with varying sensing responses to different gases to enhance gas specificity. By 
principal component analysis (PCA) methods or using neural network classification algorithms, 
the analysis of data to determine concentration and gas specificity can be simplified.(6–8) The 
analytes in this experiment include five gases (air, ethanol, CO, NO2, and NH3) and two different 
types of membrane (diluted conductive water-soluble carbon glue and polymer-carbon glue 
stacked membranes).(9)

 The classification accuracy and overall performance of neural classifiers will be evaluated 
and compared to find the best algorithm for accurate gas recognition. This method can also be 
applied to other polymer-based sensors to selectively identify gases in various mixtures and 
make concentration predictions.

2. Experimental Procedure

2.1 Design and fabrication

 This device is an electronic nose application that can accurately improve the measurement 
results of the object to be measured. The sensor array consists of 16 gas sensing areas and 20 
electrodes. It is composed of 5 × 4 arrays of independent sensing electrodes to facilitate the 
measurement of the resistance response of each sensing area. The chip size obtained after 
bonding with the circuit board is 30.5 × 30.5 mm2.
 Figure 1 shows the blueprint for the design of a 16-sensor array. After many modifications, 
we decided to use this array method to reduce the chip size significantly. By putting more 
membrane sensors in a particular area, the sensor chip size becomes 19.5 × 19.5 mm2. Each 
circular membrane sensor is designed with interdigital electrodes with a line width of 50 µm, 
and the diameter is limited to 3 mm to minimize the heat loss of the silicon substrate.
 The circuit board has 20 copper metal contacts (one negative and four positives on each side) 
for wire bonding and measurement with the chip body. The outer frame size is 30.5 × 30.5 mm2, 
and the diameter of the contact point is set to 1 mm.
 The 6-inch wafers shown in Fig. 2 were fabricated by the Taiwan Semiconductor Research 
Center based in Southern Taiwan Science Park. The thickness of the silicon substrate was 
400 µm. Membrane and sensor device samples were prepared for sputtering to deposit the 
aluminum-doped zinc oxide (AZO) structure; the thickness of AZO on top of the wafer surface 
was about 300 nm. An AZO target (purity: 99.99%) was used in the sputter system for 
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deposition. The power supply to the sputtering gun in the deposition chamber was 80 W, and the 
working pressure of the chamber was 10 × 10−3 Torr. For sputter deposition, argon (Ar) and 
oxygen (O2) gases were used in the chamber, and their flow rates were 30 and 1.5 sccm, 
respectively.
 We used laser cutting to take out the chips from the wafer. Furthermore, the electrode is made 
of aluminum of 300 nm thickness. However, the melting of the aluminum electrode edge is 
caused by high temperature, resulting in resistance uncertainty, which will in turn result in 
sensing measurement deviations. Therefore, we presumed a space of 0.5 mm on each side of 
each chip, which was left to form a high-temperature buffer zone.
 A wire bonding machine was used to bond the chip to the circuit board, and an aluminum 
wire was used as the conductive wire. However, because the electrode used in this wafer is also 
made of aluminum, the cohesiveness during wire bonding is ineffective. Later, we adjusted the 
parameters for several batches to increase the thickness of the aluminum electrode to 
300–500 nm. As a result, the cohesiveness between the electrode and the conductive wire was 
significantly improved.

2.2 Experimental setting

 Figure 3 shows the resistance measurement of the chip performed using the Keithley PXI 
SMU system under an LED UV light source with an output power of 1 µA. The sensor array is 
placed in a custom-made transparent acrylic gas chamber (volume 18 L, 30 × 30 × 20 cm3).
 In this experiment, we used five different target gases, namely, air, ethanol, CO, NO2, and 
NH3, to establish a gas sensory database, and the net flow volume of the target gas (air + analyte) 
is fixed at 2 ml. The flow controller (FC) independently controls the flow of each gas to ensure 
that the gas will not suffer from cross-contamination. The PXI SMU system captures the sensor 
array resistance at a constant voltage. After the gas is exposed, the equipment can restore the 

Fig. 2. (Color online) Sensors are arranged on the 
wafer and distributed into 16 chips.

Fig. 1. (Color online) Schematic of sensor array 
arrangement.
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baseline resistance without cleaning the gas chamber. After obtaining the original data, the gas 
response is mainly analyzed by two methods: unsupervised classification and supervised 
classification. PCA is an unsupervised method of feature extraction and recognition. The basic 
concept of PCA is to transform the original features into a set of new features in order of 
importance through a set of orthogonal vectors. These new features are linear combinations of 
the original functions and are independent of each other. The features extracted from the 
training data using PCA will be applied to the test data for gas recognition. Next, the training 
data are used to optimize different supervised classification algorithms covering a variety of 
neural networks. In the experiment, a fourfold cross-validation method is used to avoid the 
overfitting or distortion of the training data.
 We placed the chip on a fixed platform and observed the internal condition through the 
transparent acrylic air chamber. In the corner of the cavity, we placed a microfan to accelerate 
the diffusion of the target gas to achieve a balanced state; at the contact point of the chip, 20 test 
pins were also preinstalled to measure resistance. Therefore, the resistance data of 16 circular 
membrane sensors can be collected in real time to avoid data errors, as shown in Fig. 4.
 In this experiment, we also used 13 different functional polymer fluids and diluted conductive 
water-soluble carbon glue for the conductive film test in the sensing area. The testing modules 
were divided into two categories, namely, carbon glue and polymer-carbon glue.
 Functional polymers with hydrogen bond acidity, alkalinity, and neutrality were used. Sol-gel 
was used as the process method. Thirteen types of polymer, namely, P (VDC-AN), SAA, 
PMVEMA, PVP, HPMC, PMS, PVBC, PEA, PVCMM, OV-210, PIP, PC, and PS, were used in 
this experiment and dripped on the sensing area to form the membranes.
 The sensitivity and stability of the polymer sensing resistance variation can determine 
whether the swelling mechanism of the sensing film is stable. To enable the sensor to be used 
repeatedly in a short period, the sensing gas and the polymer sensing film are generally 
reversible, so most will use physical adsorption. Various polymer structures were used as 
sensing materials in the experiment.

Fig. 3. (Color online) Gas sensing data collection and analysis.
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 Because the chip body has 16 circular sensors, the carbon glue part (category 1) depicted in 
Fig. 5 was individually dripped on top of the 16 circular sensing areas. In the other part of the 
polymer-carbon glue (category 2) depicted in Fig. 5, the carbon glue was dripped on the surface 
of the sensing area first, and then the polymer liquid was also dripped on the sensing area of the 
electrodes numbered 1–13 in sequence. The 13 different types of polymer liquid were used for 
electrodes 1–13. For the remaining electrodes (electrodes 14–16), the polymer for the 13th 
electrode was used. The droplet volume of all the above fluids was 0.2 µL.
 We used two different solution drop-casting methods to fabricate 16 membranes on the 
sensor chip. Figure 5 shows the processing steps. The drying was carried out in a vacuum oven 
heated to 50 °C, and the sensor chip was placed in a vacuum to dry for 1 h. A moderate vacuum 
pressure can ensure that aerosols will not adsorb on the polymer surface during high-temperature 
drying.(10–12)

Fig. 4. (Color online) The sensor chip is used for measurement in the gas chamber.

(a) (b)

Fig. 5. (Color online) Two different drop-casting processes to form the sensing membranes. (a) Carbon membrane 
and (b) polymer-carbon membrane.
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3. Results and Discussion

 The sensor response to gas is generally considered a phase-time response, as shown in Fig. 6. 
The first step of odor analysis is to measure the reference gas, i.e., dry air, through the sensor to 
obtain the resistance baseline. Then, exposing the sensor to the target gas will cause its output 
signal to change until the resistance reaches a steady state. Then, the gas supply is turned off and 
the chamber is flushed with dry air to obtain another benchmark. The above test process is 
repeated several times to obtain the required sensing response data.
 The typical sensing curve of one cycle is shown in Fig. 6. The periods t1, t2, and t3 correspond 
to the test times of flushing with dry air, test gas, and dry air, respectively. t3 is also called the 
recovery time. The vertical axis of the sensing curve represents the resistance R of the sensor 
when gas is present, where Rb and Rmax represent the reference and maximum resistances of the 
sensor exposed to air and test gas, respectively.
 The gas reaction can be determined from the relationship between the resistance variation 
(ΔR/R) and the test time, where ΔR/R = (R − Rb)/Rb. The maximum ΔR/R on the curve is an 
indicator of the sensitivity of the sensing device, where Rb is the resistance baseline under fresh 
air existing in the environment and Rmax is the maximum resistance of the sensor exposed to air 
and test gas. Equation (1) is a typical equation used to calculate the gas sensing response of the 
sensor.

 (ΔR/R)max = (Rmax − Rb)/Rb (1)

 The diffusivity equation shown as Eq. (2) considers the effects of temperature and pressure 
on gas volume. In other words, the volume is standardized to the conditions of 25 °C and 
760 mm Hg (1013.2 MBar).

 62.216 10 logDMwPA Pr
TL P p

  = ×    −   
 (2)

Fig. 6. (Color online) Typical gas sensing response curve.
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r: diffusion rate, ng/min
D: diffusion coefficient when the temperature is T and pressure is P, cm2/s
Mw: molecular weight
P: total pressure, Torr Hg
A: cross-sectional area of diffusion tube, cm2

T: temperature, K
L: diffusion tube length, cm
p: partial solvent pressure

 We use the diffusivity to calculate the gas concentration of the dynamic carrier flow using 
Eq. (3). The concentration C is expressed in ppm by volume, r is the diffusion rate expressed in 
ng/min, and FC is the total flow rate of the mixed gas expressed in cc/min.

 ( ) / CC r K F= ×  (3)

 Equation (4) is used to calculate the constant K used in Eq. (3). Mw is the molecular weight of 
the pollutant gas, 22.4 L is one gram-mole of gas under reference conditions, which are 0 °C and 
760 mmHg, T is the room temperature expressed in °C, and P is the pressure expressed in mm 
Hg.

 ( ){ }22.4 273 760  / 273K T Mw P= + × × ×  (4)

 A neural network is a hierarchical machine learning method that gradually turns many 
disordered signals into helpful information and solves problems through layered processing. It 
contains many neurons, some of which are responsible for receiving and transmitting data. The 
neural network used in this experiment includes four layers of neurons. In addition to the input 
and output layers, there are two hidden layers in the middle responsible for delivering and 
processing data. These two hidden layers are internal layers that are not involved with input and 
output units.
 According to the literature, a simple neural network with a single hidden layer can achieve an 
accuracy of more than 97%. If it is improved, it can even reach an accuracy of more than 99%.
(13,14) When learning objects are large and complex, a more significant framework scale is 
required, indicating that more neurons or hidden layers in the network are needed. Still, it does 
not necessarily mean that a deeper network is required. For the same 100 neurons, we can divide 
the framework into 1 layer of 100 neurons or 10 layers of 10 neurons.(15) In a speech recognition 
test, whether with a shallow neural network such as a monolayer or a deep neural network with 
more than a single layer, the recognition rate increases with the number of neurons. However, 
with the same quantity of neurons, the performance of a deep neural network is always higher, 
so it is widely used.
 Figure 7 shows that we provided six types of different learning benchmark data on the input 
layer in this process, namely, ethanol, CO, NO2, NH3, temperature, and humidity. By calculating 
two layers of neurons, the main characteristics of the resistance data were captured in the first 
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hidden layer. Analysis and filtering were performed on the second hidden layer, the various 
variables in the environment were considered, and finally, the concentration data of four gases 
were obtained in the output layer.
 In fitting the experimental data, we collected the data measured by the sensor array and 
disassembled them into two parts; the first part is to read the resistance signal and then convert it 
into a gas reaction value through an equation. The second part is to collect environmental data, 
such as humidity and temperature, and normalize the two sources, then build a learning 
model.(16) Finally, the test gases ethanol, CO, NO2, and NH3 are injected into the chamber to 
capture the required data mentioned above; after that, the obtained data are input to the neural 
network; then, the model is compared with the previous experimental data to produce the final 
analysis result.
 Table 1 shows the difference in the resistance of the sensor for the two surface droplets. First, 
we used the wafer without any coating to measure the resistance in dry air, obtain a baseline of 

Table 1
Resistance difference of membrane sensor to carbon glue and polymer-carbon glue (unit: K-ohm).
Sensor Air Carbon Ethanol Polymer-carbon Ethanol
1 483 503 469 70.2 370
2 0.00539 0.03 0.02 0.00534 0.00537
3 69.9 71 66 57.9 55.2
4 4.965 9.14 9.13 5.518 5.4
5 1000 880 850 790 910
6 128.5 1270 1240 1220 1290
7 14.75 9 11 37.9 37.12
8 28.5 26.4 26.1 28 30.3
9 70.3 850 810 320 810

10 525 1310 1290 750 1290
11 43.9 68 68 51.7 49.9
12 58.4 13 10 24.8 17.4
13 8.73 –32.6 –33.8 8.8 8.7
14 3.71 –1.3 –1.4 3.7 3.73
15 47.8 165 160 48.6 210
16 9.6 –29.3 –29 9.77 9.72

Fig. 7. Multiple gases and neural network architecture.



Sensors and Materials, Vol. 34, No. 1 (2022) 171

resistance, and then measure the resistance after the carbon glue is dripped on the top surface. 
To obtain the resistance response, we injected ethanol into the wafer to observe the resistance 
variation. Finally, we added a polymer liquid on the surface of the carbon glue and injected 
ethanol for resistance measurement to compare the difference between the two.
 From Fig. 8, it is found that the resistance of the chip added with carbon glue and polymer 
increased significantly. The amplitudes of the curves were fairly similar between the carbon 
membrane and the polymer-carbon membrane, and the carbon sample sensor showed a higher 
reproducibility than the polymer-carbon sensor sample. 
 In Table 2, four different gases are selected, namely, air, CO, NO2, and NH3. From the 
above-mentioned 1 to 16 sensors, six sensors (1, 5, 9, 10, 12, and 15) were randomly selected for 
the selectivity test. These selected sensors were tested with the four different gases mentioned 
earlier. The selectivity test is conducted four times to determine if the sensor chip’s selectivity to 
the target gas is effective. The dotted scatter diagrams shown in Fig. 9 depict that the membrane 

Fig. 8. (Color online) Resistance variations by carbon and polymer-carbon membranes.

Table 2
Randomly selected membrane sensors for gas selectivity testing (unit: K-ohm).
Selectivity 1 Air CO NO2 NH3 Selectivity 3 Air CO NO2 NH3
1 51.4 52.9 36.3 36.9 1 39.3 39.9 36.5 37.1
5 243 245 233 243 5 260 266 210 212
9 217 136.9 135.9 134.5 9 131.5 133.9 122.5 123.9

10 590 540 510 490 10 480 440 364 385
12 71.3 52.6 63.7 60.2 12 44.1 44.5 44.2 46.5
15 32.9 29.9 25.1 25.7 15 21.9 22.5 22.9 21.8
Selectivity 2 Air CO NO2 NH3 Selectivity 4 Air CO NO2 NH3

1 35.3 37.8 36.2 34.9 1 34.1 33.7 31.2 33.6
5 250 255 260 268 5 230 146.7 150.7 122.2
9 142.3 138.9 134.5 135.5 9 127.5 132.8 123.9 100.3

10 448 459 449 440 10 415 423 384 382
12 61 57.6 58.5 62.5 12 41.3 42.9 41.3 42.5
15 23 23.6 22.6 23 15 8.8 9.07 8.8 8.08
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Fig. 9. (Color online) Selection and memory scatter diagram obtained using target gas.

sensors have specific selectivity and memory for the target gas in this experiment. After repeated 
tests, the point distributions are shared fairly similarly, indicating that the sensor chip is highly 
reliable and repeatable to distinguish gases, and shows excellent adaptability with a neural 
network.

4. Conclusions

 In summary, a combination method was used to fabricate array sensors with 13 different 
functional polymers and carbon glue, and then neural networks were used to identify gases 
selectively. Five target gases can be placed and have outstanding reproducibility by only using a 
set of array sensors. A PCA study was carried out on the array reaction to detect air, ethanol, 
CO, NO2, and NH3 gases, and the results showed a clear separation between the gas families. 
Next, a neural network-like network was used to train and optimize essential parameters. The 
method used shows excellent selectivity for specific gases in multiple sets of mixtures to screen 
out the best algorithm. It also proved that the solution drop-casting method’s easy controllability 
can simplify the production of sensor membranes. As a result, the most prominent gas sensitivity 
can reach (ΔR/R)max = 149% at room temperature and atmospheric humidity.

Acknowledgments

 This work was financially supported by the Ministry of Science and Technology of Taiwan 
(project number MOST 110-2221-E-218-009). The authors also thank the Taiwan Semiconductor 
Research Institute for providing the wafer and sensor chip fabrication equipment and Kun-Han 
Tsai, Yu-Xuan Deng, and Huei-Wun Lyu for their assistance during the experiments.



Sensors and Materials, Vol. 34, No. 1 (2022) 173

References

 1 T. Julian, S. N. Hidayat, A. Rianjanu, A. B. Dharmawan, H. S. Wasisto, and K. Triyana: ACS Omega. 5 (2020) 
29492. https://doi.org/10.1021/acsomega.0c04433

 2 S. J. Young, Z. D. Lin: Microsyst. Technol. 24 (2018) 4207. https://doi.org/10.1007/s00542-018-3712-x
 3 E. Gambi, G. Temperini, R. Galassi, and L. Senigagliesi: IEEE Sens. J. 20 (2020) 13562. https://doi.org/10.1109/

JSEN.2020.3005642
 4 R. A. Potyrailo, J. Brewer, B. Cheng, M. A Carpenter, N. Houlihan, and A. Kolmakov: Faraday Discuss. 223 

(2020) 161. https://doi.org/10.1039/D0FD00035C
 5 T. Yoshizumi, T. Goda, A. Matsumoto, and Y. Miyahara: Sens. Mater. 30 (2018) 1001. https://doi.org/10.18494/

SAM.2018.1808
 6 M. A. H. Khan, B. Thomson, R. Debnath, A. Motayed, and M. V. Rao: IEEE Sens. J. 20 (2020) 6020. https://

doi.org/10.1109/JSEN.2020.2972542
 7 Z. Chen, Y. Zheng, K. Chen, H. Li, and J. Jian: IEEE Sens. J. 17 (2017) 1884. https://doi.org/10.1109/

JSEN.2017.2653400
 8 X. Zhang, K. Zhang, D. Lin, Y. Zhu, C. Chen, L. He, X. Guo, K. Chen, R. Wang, Z. Liu, X. Wu, E. Long, K. 

Huang, Z. He, X. Liu, and H. Lin: Gigascience. 9 (2020) giaa011. https://doi.org/10.1093/gigascience/giaa011
 9 B. Wang, J. C. Cancilla, J. S. Torrecilla, and H. Haick: Nano. Lett. 14 (2014) 933. https://doi.org/10.1021/

nl404335p
 10 A. D. K. T. Lam, Z. D. Lin, H. Y. Lu, and S. J. Young: Microsyst. Technol. 28 (2019) 209. https://doi.org/10.1007/

s00542-019-04573-2
 11 S. J. Young, Z. D. Lin: Microsyst. Technol. 24 (2018) 4207. https://doi.org/10.1007/s00542-018-3712-x
 12 L. M. Wei, H. Y. Chen, J. Wang, W. E. Yuang, J. Zhao, D. Xu, and Y. F. Zhang: Sens. Mater. 26 (2014) 9. https://

myukk.org/SM2017/sm_pdf/SM965.pdf
 13 M. Nielsen: Neural Networks and Deep Learning, Eds. (Determination press, San Francisco, CA, 2015) 1st ed., 

Chap. 1. https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
 14 O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. 

Bernstein, A. C. Berg, and L. Fei-Fei: Int. J. Comput. Vis. 115 (2015) 211. https://doi.org/10.1007/s11263-015-
0816-y

 15 D. Yu, F. Seide, and G. Li: Proc. 2012 Int. Conf. Machine Learning (ICML, 2012). https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-ICML2012-Invited.pdf

 16 V. V. Krivetskiy, M. D. Andreev, A. O. Efitorov, and A. M. Gaskov: Sens. Actuators, B 329 (2021) 129187. 
https://doi.org/10.1016/j.snb.2020.129187

https://doi.org/10.1021/acsomega.0c04433
https://doi.org/10.1007/s00542-018-3712-x
https://doi.org/10.1109/JSEN.2020.3005642
https://doi.org/10.1109/JSEN.2020.3005642
https://doi.org/10.1039/D0FD00035C
https://doi.org/10.18494/SAM.2018.1808
https://doi.org/10.18494/SAM.2018.1808
https://doi.org/10.1109/JSEN.2020.2972542
https://doi.org/10.1109/JSEN.2020.2972542
https://doi.org/10.1109/JSEN.2017.2653400
https://doi.org/10.1109/JSEN.2017.2653400
https://doi.org/10.1093/gigascience/giaa011
https://doi.org/10.1021/nl404335p
https://doi.org/10.1021/nl404335p
https://doi.org/10.1007/s00542-019-04573-2
https://doi.org/10.1007/s00542-019-04573-2
https://doi.org/10.1007/s00542-018-3712-x
https://myukk.org/SM2017/sm_pdf/SM965.pdf
https://myukk.org/SM2017/sm_pdf/SM965.pdf
https://static.latexstudio.net/article/2018/0912/neuralnetworksanddeeplearning.pdf
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-ICML2012-Invited.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/CD-DNN-HMM-ICML2012-Invited.pdf
https://doi.org/10.1016/j.snb.2020.129187

