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 The output of a MEMS gyroscope is easily influenced by temperature, which has led to a 
bottleneck in the development of gyroscopes. Therefore, to eliminate the temperature error of 
gyroscopes, a parallel processing algorithm based on variational modal decomposition optimized 
by genetic particle swarm optimization variational modal decomposition (GPSO-VMD) and an 
improved backpropagation (BP) neural network is proposed in this paper. First, for the original 
output signal of a gyroscope, GPSO is adopted to search for the optimal parameters for VMD. 
Next, the optimal parameters (kbest, αbest) are applied to VMD to obtain intrinsic mode functions 
(IMFs). Then, according to the calculated result of multiscale permutation entropy (MPE), IMFs 
are divided into three categories: noise items, mixed items, and drift items. The three categories 
are treated separately: noise items are removed directly, mixed items are filtered, and for drift 
items, temperature errors are eliminated by using an improved BP neural network. The final 
signal is then obtained through reconstruction. Compared with the traditional optimization 
algorithm, GPSO has excellent global search ability and strong convergence. The BP neural 
network improved by the genetic algorithm (GA) overcomes the problem of easily falling into a 
local optimum, and excellent prediction performance is achieved. Experimental results 
demonstrate the feasibility of this proposed hybrid model in eliminating gyroscope temperature 
errors.

1. Introduction

 With the rapid development of MEMS technology, research on inertial devices such as 
accelerometers and gyroscopes has become a hotspot.(1–5) MEMS gyroscopes are widely used in 
aviation, aerospace, and other high-precision measurement and control fields due to their low 
cost, low power consumption, robustness, and excellent performance.(6,7) Unfortunately, the 
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performance of MEMS gyroscopes is limited by many factors, such as background noise, 
humidity drift, and temperature drift, which has greatly inhibited their development.(8–14) In 
terms of temperature drift, scholars have performed numerous studies on improving the 
gyroscope structure and the subsequent output signal processing to reduce the temperature error, 
and achieved outstanding results.
 The methods of gyroscope temperature compensation can be roughly divided into hardware 
compensation and software compensation. Hardware compensation mainly involves optimizing 
the structure and circuit of the gyroscope. Cui et al. studied a temperature compensation model 
based on a scale factor, and were able to eliminate the temperature error by compensating the 
driving amplitude operating point.(15) In Ref. 16, by designing a high-linearity amplifier with 
constant transconductance, the circuit of a gyroscope was optimized to eliminate the temperature 
error. A new control method to make the transmission shaft of a MEMS gyroscope resonate, 
thereby achieving temperature compensation, was analyzed by Zheng et al.(17) However, 
hardware compensation has the disadvantage of a long implementation cycle and high cost.
 The second method is software compensation. Its core idea is to further process the gyroscope 
output signal by adopting software. The processing aspect includes noise reduction of the high-
frequency part and temperature drift compensation of the low-frequency part, and the final 
processed output signal is obtained through reconstruction. Parallel processing and serial 
processing are two different processes. Serial processing involves denoising followed by 
compensation, but it causes some static drift and affects signal processing. This led to the 
development of the parallel processing method, which mainly processes the noise part and the 
drift part separately at the same time. Fei et al. adopted a robust adaptive control strategy based 
on a fuzzy compensator, and the effectiveness of the strategy was verified by numerical 
analysis.(18) In Ref. 19, a radial basis function neural network based on the genetic algorithm 
(GA) and Kalman filter was adopted, which greatly improved the bias instability of a gyroscope.
 An important step in the software compensation method of parallel processing is the 
multiscale decomposition of the signal. Common signal decomposition methods include local 
mean decomposition and empirical mode decomposition, but they are essentially recursive 
decomposition methods, which cannot completely eliminate modal aliasing, the end effect, and 
other problems.(20,21) By contrast, the variational modal decomposition (VMD) algorithm has a 
good decomposition effect for nonstationary nonlinear signals and can suppress clutter 
interference and mode aliasing to a certain extent, avoiding the defects of nonrecursive 
decomposition algorithms.(22) However, the parameters of the VMD algorithm are artificially 
selected, and improper parameter selection will have a major impact on experimental results. 
Wang et al. optimized the parameters of VMD by adopting particle swarm optimization (PSO), 
which effectively extracted the signal features.(23) However, PSO tends to converge prematurely 
and fall into a local optimum when searching for an optimal solution, resulting in poor 
optimization. To improve the accuracy and speed of optimization, Ma et al. proposed an immune 
particle swarm optimization (IPSO) algorithm.(24) In this paper, we propose the use of genetic 
particle swarm optimization (GPSO) to optimize VMD, and the best decomposition effect is 
achieved through iterative optimization. Another key step is to establish an appropriate 
temperature compensation model. Artificial neural network prediction is favored by many 
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researchers due to its superiority in gyroscope temperature compensation, and it has 
incomparable advantages in dealing with nonlinear problems. When the temperature 
compensation model uses a neural network prediction method, it is necessary to set the test set 
and the training set. The training set is the pre-obtained reference temperature and the 
corresponding temperature drift, and the test set is the data to be processed. After the 
temperature compensation model is established, the model can predict the output value as 
compensation when the test set is input. By using a neural network model, Shiau et al. established 
a temperature calibration mechanism that improved the calculation problem caused by 
temperature drift.(25) Xia et al. established a temperature control system based on a 
backpropagation (BP) neural network that could control the temperature error within 0.2 ℃.(26) 
However, it did not overcome the inherent shortcoming of BP neural networks of easily falling 
into a local optimum. Therefore, in this paper, we improve the initial weights of the BP neural 
network by using GA, which gives the BP neural network better nonlinear mapping capability 
and prediction accuracy.
 On the whole, the hybrid model proposed in this paper is a parallel processing method. The 
VMD algorithm optimized by GPSO is used for signal decomposition to obtain a series of 
intrinsic mode functions (IMFs), and then the multiscale permutation entropy (MPE) is used to 
judge the complexity of the time series and divide the components into noise items, mixed items, 
and temperature drift items.(27) The noise items are removed directly because the information 
they contain is useless, and the noise items are denoised by using a forward linear prediction 
(FLP) filtering algorithm. For the temperature drift items, the BP network optimized by GA is 
used to predict and realize temperature compensation. Finally, the processed items are 
reconstructed to obtain the final output signals of the gyroscope. Experiments show that this 
method has excellent performance for the signal processing of gyroscopes.

2. Dual-Mass MEMS Gyroscope

 The sample gyroscope used in this paper is a dual-mass MEMS gyroscope with a tuning-fork 
structure, as shown in Fig. 1. The gyroscope has two modes: the driving mode and the sensing 

Fig. 1. (Color online) Schematic diagram of MEMS gyroscope structure.
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mode, and each mode is composed of three parts and contains frames, combs, and springs. The 
gyroscope also has two masses, with each mass a common part of the two modes, and the two 
modes are isolated from each other without coupling displacement. In addition, an automatic 
gain control (AGC) loop is adopted by the gyroscope to stabilize the vibration amplitude of the 
driving mode and improve the gyroscope’s mechanical sensitivity. When static electricity acts 
on the driving mode, the two sensing masses are coupled by the x-axis warpage of the driving 
spring, and the left and right masses are connected and coupled by the connecting U-shaped 
spring.
  The first four modes of the gyroscope structure are shown in Fig. 2. The left and right masses 
and the driving frame vibrate along the x-axis in the same direction. The actual working sensing 
mode is jointly constituted of the modes in Figs. 2(b) and 2(c), where Fig. 2(c) shows the third-
order mode of the anti-phase mode, and Fig. 2(b) shows the second-order mode of perception of 
the in-phase mode. The sensing frame and the left and right masses move along the y-axis, and 
the directions of motion of the two masses are the same in Fig. 2(b) but opposite in Fig. 2(c). The 
fourth-order mode shown in Fig. 2(d) is the driving anti-phase mode, and this mode is the actual 
working driving mode, in which the left and right masses move in opposite directions along the 

(a) (b)

(c) (d)

Fig. 2. (Color online) (a) Driving in-phase mode (first mode), (b) sensing in-phase mode (second mode), (c) sensing 
anti-phase mode (third mode), and (d) driving anti-phase mode (fourth mode).
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driving shaft. The electrostatic force can drive the driving mode, causing the two masses to 
vibrate in opposite directions along the x-axis. After the angular rate input Ωz around the z-axis 
is reached, the vibration mass generates the Coriolis force and transmits it to the sensing frame 
on the y-axis, and the monitoring circuit can monitor the whole process.
 A schematic diagram of the MEMS gyroscope monitoring system is shown in Fig. 3. In the 
driving loop, the displacement of the drive frame x(t) is detected by the drive sensing combs and 
extracted by a differential amplifier. To meet the phase requirement of the AC drive signal, 
which is Vdacsin(ωdt), the phase of the signal is delayed by 90°. Then, full-wave rectification and 
low-pass filtering are used to extract the amplitude of the signal Vdacsin(ωdt). The voltage Vdac in 
the comparator is then compared with the reference voltage Vref. A control signal generated by 
the integrator controller is used to drive the DC signal Vdc to accumulate Vdacsin(ωdt) to stimulate 
the driving mode. A differential detection amplifier is used to detect the left and right quality-
sensing signals, and the output signal is processed by the secondary difference to generate the 
signal Vstotal. The sensing circuit is an open-loop circuit, which is similar to the driving circuit. 
The sensing signal Vstotal is demodulated by Vdacsin(ωdt) and filtered by a low-pass filter to 
obtain the motion signal VOopen. Finally, the sensing open-loop output signal is VOopen.(28)

3. Algorithms and Models

3.1 VMD

 VMD is a nonrecursive modal decomposition algorithm based on the Wiener filter. The 
signal can be decomposed into multiple IMF components with a certain bandwidth around the 
center frequency by adopting VMD. The VMD algorithm includes two parts: establishing the 
variational model and solving the variational model,(29) and the details are as follows:

Fig. 3. (Color online) Schematic diagram of gyroscope monitoring system.
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3.1.1 Establishment of variational model

(1) Decompose each mode of the original signal f to obtain uk(t), which has k IMF components. 
Hilbert variations are performed on each mode to obtain its one-sided spectrum:

 ( ) * ( )k
jt u t
t

δ
π

 +  
, (1)

where * represents the convolution operator.
(2) The center frequency of each uk(t) is estimated and its spectrum is modulated to the 
corresponding baseband, which is
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(3) A Gaussian smoothing index is used to estimate the bandwidth of each IMF component after 
the frequency shift, and the calculation process is transformed into a constrained variational 
problem:
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where s.t. is an abbreviation of “subject to” and indicates the constraints, and || || indicates the 
norm, which is a mapping from a linear space to a non-negative real number.
(4) The quadratic equilibrium constraint parameter α (also called the penalty factor) and the 
Lagrange multiplier λ(t) are introduced to transform the variational problem into an 
unconstrained variational problem. The parameter α can ensure the reconstruction accuracy of 
the signal and avoid the interference of Gaussian noise, and λ(t) can ensure the severity of 
constraints. Equation (4) is the Lagrange equation:
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where ∂ is the balancing parameter of the data-fidelity constraint. < > is the inner product 
operator, where the inner product operation is to take the transpose of the first term and multiply 
it by the second term.
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3.1.2 Solving the variational model

 The saddle points of the Lagrange expression are searched for by the alternative direction 
multiplier method, and the saddle points are the optimal solutions of Eq. (4). The algorithm is 
described as follows:
(5) Initialize {uk

1}, {ωk
1}, {λ1}, and the number of iterations n.

(6) Update uk and ωk as follows:
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(7) Update λ as follows:
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(8) The discriminant precision is ε > 0. If the discriminant in Eq. (8) is satisfied, the algorithm 
stops. Otherwise, the calculation returns to step (6).
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 In Eqs. (5)–(7), ( )iu ω , 1( )n
ku ω+ , ( )λ ω



, and ( )f ω


 denote the Fourier transforms of ui(t), 
1( )n

ku t+ , λ(t), and f(t), respectively.
 Although VMD has the property of nonrecursive synchronous decomposition, the selection 
of some parameters, such as the number of decomposition modes k and the penalty factor α, will 
have a significant influence on the decomposition results. A very large k value will result in 
over-decomposition, and a very small k value will result in underdecomposition. Similarly, the 
value of α will affect the bandwidth of the modal function; the larger the value of α, the smaller 
the bandwidth.

3.2 GPSO

 Because the choice of parameters in VMD has a significant influence on the decomposition 
result, the optimal parameters (kbest, αbest) in VMD are searched for by adopting the GPSO. 
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GPSO combines the advantages of the strong global search ability of GA and the fast 
convergence of the PSO algorithm, which can greatly improve the optimization efficiency.

3.2.1 GA

 GA was inspired by Darwin’s theory of evolution.(30) By simulating the genetic mechanism of 
nature and the theory of biological evolution, GA can find optimal solutions. A binary code is 
used to represent the genes of individuals and the details are described as follows:
1.  Initialize the population and determine the population size, cross probability, mutation 

probability, and evolutionary termination rule.
2.  Assess the fitness of individuals in the population.
3.  Individuals with poor fitness are eliminated according to the mechanism of survival of the 

fittest, and the surviving individuals are randomly selected according to their fitness value. 
At the same time, the surviving individuals copy themselves to form a new population.

4.  Surviving individuals replicate themselves to produce parents, and the parents carry out 
genetic operations to produce offspring. Genetic operations include crossover and mutation. 
Crossover is the exchange of genes between parents’ chromosomes, and mutation is a sudden 
change in a gene’s position. New individuals are created in these two ways.

5.  The current population is propagated and new individuals are produced through selection, 
crossover, and mutation.

6.  Evolution ceases if a preset termination condition is met. Otherwise, the algorithm returns to 
step 2.

 In a complex space, GA adopts a probabilistic optimization method, which can adjust the 
search direction adaptively and obtain the optimized search space automatically. GA has the 
characteristics of parallelism, randomness, and robustness.

3.2.2 PSO

 PSO is a global stochastic algorithm based on swarm intelligence that seeks the optimal 
solution through collaboration and information sharing between individuals in a complex space. 
After iterative optimization, a global optimal solution can be obtained, and the PSO algorithm is 
expressed as follows:
1.  The particle swarm is randomly initialized in the velocity interval and search space to 

determine the initial position and velocity of the particle. The spatial dimension of the 
particle search is assumed to be D, the position of the ith particle is denoted as 
Xi = [xi1, xi2, xi3, ..., xiD], and the velocity vector is denoted as Vi = [νi1, νi2, νi3, ..., νiD].

 The individual extremum and global extremum can be obtained by calculating the fitness of 
particles. The individual extremum is the best position that each particle passes through, 
denoted by Pibest = [pi1, pi2, pi3, ..., piD], and the global extremum is the best position found in 
the population, which is Pgbest = [pg1, pg2, pg3, ..., pgD].

2.  The velocity and position of the particles are updated. The velocity update formula of each 
particle in the iterative process is
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 1 1 2 2( 1) ( ) [ ( )] [ ( )]i i ibest i gbest iV k V k c r p X k c r p X kω+ = + − + − , (9)

where k is the number of iterations, c1 and c2 are the learning factors, r1 and r2 are random 
numbers between 0 and 1, and ω is the inertia weight coefficient. The range of the solution 
space is adjusted by adjusting the weight ratio. In D-dimensional space, the position of 
particle i is obtained as

 ( 1) ( ) ( 1)i i iX k X k V k+ = + + . (10)

3.  The iteration stops when the maximum number of iterations is reached or the optimal 
solution is found by the particle swarm search.

3.2.3 GPSO

 In the early stage of optimization, the PSO algorithm generally has a faster convergence rate, 
with all particles close to the optimal position, which leads to the uniformity of the particles, 
then the convergence rate decreases in the later stage of optimization. For this reason, the 
crossover and mutation operations in GA are then introduced. By including the characteristics of 
GA for global optimization, the convergence rate of the particles in the local area is improved, 
thereby enhancing the search ability of the particles, and realizing the complementarity of the 
two algorithms.(31) The flowchart of the GPSO algorithm is shown in Fig. 4 and involves the 
following steps.

Fig. 4. (Color online) Flowchart of GPSO fusion algorithm.
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1.  Randomly initialize the particles in the population and set the corresponding parameters. 
The number of particles in the population is assumed to be N.

2.  Calculate the fitness of the individuals in the population, and update the individual extremum 
and the global extremum in the population according to the fitness. Then obtain the 
individual optimal value (Pbest) and the global optimal value (Gbest) of the particle swarm.

3.  Update the velocity and position of the particles and create a new population.
4.  Genetic procedure. Apply the crossover operation to particles Xi and Xj with probability Pc. 

The operations of position and velocity crossover are respectively given by Eqs. (11) and 
(12), where b1 and b2 are random numbers in [0, 1].
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Then, in the position and velocity crossover operations, the new individual is obtained by 
mutating the particles with probability Pm as follows:
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In Eq. (13), Xmax and Xmin are the upper and lower bounds of the value for particle Xij, 
respectively, and Gmax is the maximum number of evolutionary iterations in Eq. (14). 

5.  The fitness value of particles in the new population is recalculated, and the optimal solution 
(Pbest, Gbest) of the population is updated according to the fitness value.

6.  Determine whether the condition for ending the iteration is satisfied. If it is not satisfied, 
return to step 2. 

 The GPSO algorithm takes the PSO algorithm as the main process and integrates the 
crossover and mutation operations of GA into PSO. This fusion algorithm makes full use of the 
advantages of GA and PSO to ensure rapid convergence to the global optimal solution.

3.3 Improvement of BP neural network by GA

3.3.1 BP neural network

 The basic idea of a BP neural network is to use the gradient descent method to adjust the 
weights and threshold of the network so as to minimize the mean square error between the 
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actual output value and the expected output value of the network, which is a kind of multilayer 
feedforward neural network. Figure 5 shows the topology of a three-layer BP neural network 
comprising an input layer, a hidden layer, and an output layer. Each neuron is fully connected to 
the nodes in the next layer, while the nodes in the same layer are not connected to each other.(32)

 The numbers of nodes in the input layer, hidden layer, and output layer of the network are set 
to n, l, and q, and the nodes of the input layer, hidden layer, and output layer are denoted as Xi, Yi, 
and Zi, respectively. The weight of the connection from Xi to Yh is Wih, and the weight of the 
connection from Yh to Zj is Whj. The threshold of the input layer to the hidden layer is αh, the 
threshold of the hidden layer to the output layer is bj, and the excitation function is

 1( )
1 xg x

e−
=

+
. (15)

The output of the hidden layer is
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Fig. 5. (Color online) BP neural network structure.
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where Oj represents the desired output value and Zj represents the predicted output value 
obtained through the network.
 The error is backpropagated, and the weights and threshold sizes are continuously updated. 
The training is repeated until the predicted output becomes infinitely close to the actual output.
 The weight training procedure of the BP neural network is essentially a complex function 
optimization problem, and the BP network is very sensitive to the initial weights. In the process 
of network training, the traditional method of obtaining the weights is to use certain rules and 
gradually adjust them. In addition, the selection of relevant parameters is often determined 
according to experience, which causes the convergence rate of the network to be slow and results 
in an excessively long training time.

3.3.2 Improvement of BP neural network by GA

 To improve the inherent shortcomings of the BP network, in this study, GA is introduced to 
optimize the initial weights of the BP network.(33) GA has good global search performance and 
can obtain the global optimal solution with the maximum probability. Figure 6 shows the 
implementation process of the GA-BP network, where the preliminary search is completed by 
GA, which can improve the prediction accuracy and nonlinear mapping ability of BP. The BP 
neural network is assumed to have three layers, and the steps in BP are as follows: 

Fig. 6. (Color online) Flowchart of GA-BP.
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1.  The weight distribution of a group of neural networks is generated randomly. All weights are 
connected together in a certain order to form an individual, and then multiple individuals are 
generated to form a group.

2.  Input the training set. Each individual in the population is trained with training samples, and 
the fitness value of each individual is calculated according to the formula of the learning 
error, which is

 2

1 1

1 ( )
2

qn

kj kj
k j

E O Z
= =

= −∑∑ . (19)

Zkj represents the actual output of the jth neuron node in the output layer of the kth sample 
and Okj represents the desired output value.

3.  The selection operation is sort selection. The individuals are arranged into a sequence 
according to the fitness value, and the individuals with high fitness enter the next generation 
as the parents. 

4. The arithmetic crossing method (linear crossing) is used in the crossing:
 

 1 1 2

2 2 1

(1 ) ,
(1 ) ,

c m p m p
c m p m p
= × + − ×
= × + − ×

 (20)

where m is a random number between 0 and 1, p1 and p2 are components of the parent 
individuals, and c1 and c2 are the corresponding components of the offspring individuals. In 
the mutation operation, the relevant weights are set to zero after a neuron is deleted by the 
mutation operation, and when a neuron is added by the mutation operation, the corresponding 
initialization weights are generated randomly. 

5.  Non-uniform variation is used in the mutation operation.
6.  Repeat steps 3 to 5 until evolution has been carried out for m generations, and retain the 

individuals with the best fitness. Use GA to iteratively search for the optimal weights of the 
BP neural network, then calculate the fitness value of the current population to obtain the 
optimal individual, which is updated to Pbest. 

7.  Obtain the best network weight after decoding Pbest, then use the BP neural network with the 
optimal weights to predict the test set.

3.4 MPE

 MPE can calculate and measure the complexity and uncertainty of a sequence from multiple 
scales and can accurately reflect the microscale abrupt behavior of the vibration response of a 
dynamic system with high sensitivity.(34) MPE is improved on the basis of permutation entropy, 
and the coarse-grained processing of time series is carried out in multiple scales. A time series of 
length L, {x1, x2, x3, ..., xL}, is given and coarsened by the following process:
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where s is the scale factor. When s = 1, the time series is the original series and the calculated 
entropy is the permutation entropy. Then, the MPE of the time series is calculated using the 
permutation entropy algorithm after multiscale decomposition of the sequence.
 In terms of analyzing the signal complexity, MPE can consider the possible existence of 
different time scales in a time series. In this paper, the complexity of IMFs is judged by 
calculating the mean value of the MPE of different components; the larger the mean value, the 
more complex the IMF component, and the smaller the mean value, the more regular the IMF 
component.

3.5 Proposed model based on GPSO-VMD and improved BP

 The flowchart of the parallel processing model proposed in this paper is shown in Fig. 7, 
which includes the following steps.
1. The output value of the gyroscope as a function of temperature and the corresponding 

temperature are obtained through a temperature experiment. Then, the output signal is 
decomposed by GPSO-VMD, and the optimal VMD parameters (kbest, αbest) are obtained by 
GPSO iterative optimization. After decomposition, IMFs are obtained.

2. MPE is used to judge the complexity of each IMF sequence, and these sequences are divided 
into three parts, noise items, mixed items, and drift items, according to the calculated values. 
The noise items contain useless noise information, which can be removed directly. The 
mixed items are smoothed by an FLP filter, and the drift items correspond to the drift of the 
gyroscope due to changes in temperature. The GA-BP temperature prediction method is 
adopted to compensate the drift. 

3. Finally, the mixed items after FLP filtering and the drift items after temperature 
compensation are reconstructed to obtain the final output signal.

Fig. 7. (Color online) Process of parallel model based on GPSO-VMD and improved BP.
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4. Experimental Process, Results, and Discussion

4.1 Experimental process

 Figure 8 shows the gyroscope and the equipment used in the temperature experiment 
performed to verify the feasibility of the proposed method. The experimental devices included a 
temperature-controlled oven, a signal generator (Agilent 33220A), a power supply (Agilent 
E3631A), a multimeter (Agilent 34401A), an oscilloscope (Agilent DSO7104B), a turntable 
power supply that can provide ±10 V DC voltage, and a grounding device. The detection circuit 
designed in this experiment was placed in three printed circuit boards (PCBs), which were 
wrapped in a rubber pad and placed in a metal shell. The purpose of this placement was to 
protect the chip structure of the detection circuit from external impacts while grounding the 
metal shell to effectively shield the detection circuit from electromagnetic field interference. The 
three PCBs had different functions. One PCB was connected to the fabric chip structure as an 
interface for processing weak signals, and the other two were the sensing circuit and driving 
circuit.
 The temperature inside the metal casing of the gyroscope was measured in real time using a 
thermal resistance. The two output lines of the thermal resistance were connected to a 
multimeter, and the gyroscope temperature was obtained in real time by adopting the multimeter 
to obtain the thermal resistance value. Firstly, a tuning-fork MEMS gyroscope was placed in the 
temperature-controlled oven with a temperature range of –40 to 60 ℃. To ensure that the initial 
temperature of the gyroscope was 60 ℃, the experimental equipment was energized for 1 h at 
room temperature, and then quickly heated to 60 ℃. Then, the temperature of the oven was set 
to drop by 10 ℃ every 1 h to ensure that the temperature of the gyroscope was consistent with 
the temperature of the oven. The multimeter collected the output of the gyroscope at a rate of 

Fig. 8. (Color online) Devices in temperature experiment.
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1000 points/h. After the oven temperature had been maintained at the lowest temperature of 
−40 ℃ for 1 h, all cooling steps and tests were completed. The measured data are shown in 
Fig. 9, and the variation curve indicates that the output of the MEMS gyroscope is easily 
constrained by the temperature. Consequently, the establishment of a temperature compensation 
model is necessary.

4.2 Results and discussion

 The experimental results in Fig. 9 indicate that the output of the gyroscope varies greatly 
with temperature, with a variation of 0.0287°/s in the range of –33.67 to 55.67 °C. Meanwhile, 
there are many burrs in the output signal, indicating a large amount of noise interference. 
Therefore, it is necessary to remove the noise and compensate the temperature drift of the output 
signal.
 The output signal is decomposed by VMD based on GPSO. The GPSO algorithm is first used 
to obtain the optimal parameters (kbest, αbest) of VMD. When VMD is optimized by the GPSO 
algorithm, the size of the population is set to 50, the range of k is 3 to 11, and the range of α is 50 
to 5000. The optimization results are shown in Fig. 10, and the optimal parameters are k = 11 and 

Fig. 9. (Color online) Output signal and temperature change of gyroscope measured by experiment.

Fig. 10. (Color online) Particle distribution map.
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Fig. 11. (Color online) Result of the VMD decomposition of the output signal.

α = 4641. Figure 10 also shows the distribution of the optimal particle in all particle swarms. 
Then, the obtained parameters are used in the VMD to obtain the decomposition results, as 
shown in Fig. 11. Next, the scale factor is set to 12 and the average value of the MPE of each IMF 
component is calculated. According to the calculation results, the 11 components are divided 
into three parts: noise items, mixed items, and drift items (Fig. 12).

Fig. 12. (Color online) Results of classification using MPE.
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 Noise items have a high degree of disorder and contain useless information, which can be 
removed directly. FLP is used to filter the mixed items. After filtering, the variance of the mixed 
items is reduced from 1.018 × 10−4 to 1.720 × 10−5, which shows that the noise interference is 
effectively removed. Then, the temperature drift term is processed by the BP neural network 
based on GA, and the final processing results are shown in Fig. 13. Subsequently, the final 
output signal is obtained by reconstructing the processed drift and mixed items and is shown in 
Fig. 14.

Fig. 14. (Color online) Reconstructed output signal.

Fig. 13. (Color online) Result of using the model to process the signal.
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 After that, the Allan variance is used to evaluate the performance of the reconstructed signal 
(Fig. 15). The results show that the processed signal is smoother and has better performance than 
the unprocessed signal. The angular random walk value was 3.832 × 10−3°/h/√Hz, compared 
with 0.0523°/h/√Hz for the original signal of the gyroscope, and the bias stability of the 
processed signal was 0.273°/h, compared with 31.428°/h for the original signal of the gyroscope. 
These results clearly demonstrate the effectiveness of the parallel processing model of the 
gyroscope output signal based on GPSO-VMD and GA-BP. However, there are still some defects 
to be overcome that require further study, such as the excessively long optimization time of the 
GPSO algorithm.

5. Conclusions

 We proposed a hybrid parallel processing model based on GPSO-VMD and improved BP to 
reduce the MEMS gyroscope temperature error. Experimental results showed that the 
temperature has a strong influence on the output of the gyroscope, and this processing model 
can effectively extract the features of the gyroscope signal and reduce the noise interference and 
temperature drift in the output signal. In this model, VMD based on the GPSO algorithm is 
adopted to decompose the original output signal, where GPSO is introduced to optimize the 
parameters of VMD to find the optimal solution (kbest, αbest), and a series of IMFs is obtained 
after decomposition. Then, MPE is used to divide all the IMFs into three parts: noise items, 
mixed items, and drift items. Noise items are removed directly, mixed items are filtered with 
FLP, and drift items are compensated using the GA-BP algorithm. Finally, the filtered mixed 
items and the compensated drift items are reconstructed to obtain the final output signal. The 

Fig. 15. (Color online) Comparison of Allan variance.
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results of numerical analysis show that the processed signal has better performance than the 
original output signal: the angular random walk value of the compensated signal is reduced by 
92.6% and the bias stability is reduced by 99.1%. Therefore, the proposed parallel processing 
model can remove the noise interference and greatly eliminate the temperature error in the 
output signal of the MEMS gyroscope.

Acknowledgments

 This work was supported by the National Natural Science Foundation of China (No. 
51705477) and Pre-Research Field Foundation of Equipment Development Department of China 
(No. 61405170104). It was also supported by the Program for Top Young Academic Leaders of 
Higher Learning Institutions of Shanxi, the Fund Program for the Scientific Activities of 
Selected Returned Overseas Professionals in Shanxi Province, Shanxi Province Key Laboratory 
of Quantum Sensing and Precision Measurement (201905D121001), the Patent Promotion and 
Implementation Program of Shanxi Province (2019025), Key Research and Development (R&D) 
Projects of Shanxi Province (202003D111004), the Aeronautical Science Foundation of China 
(2019080U0002), and the Shanxi “1331 Project” Key Subjects Construction Fund.

References

 1 D. K. Shaeffer: IEEE Commun. Mag. 51 (2013) 100. https://doi.org/10.1109/MCOM.2013.6495768 
 2 A. Noureldin, T. B. Karamat, M. D. Eberts, and A. El-Shafie: IEEE Trans. Veh. Technol. 58 (2009) 1077. 

https://doi.org/10.1109/TVT.2008.926076
 3 J. Wendel, O. Meister, C. Schlaile, and G. F. Trommer: Aerosp. Sci. Technol. 10 (2006) 527. https://doi.

org/10.1016/j.ast.2006.04.002
 4 A. Waegli, J. Skaloud, S. Guerrier, M. E. Parés, and I. Colomina: Meas. Sci. Technol. 21 (2010) 156. https://doi.

org/10.1088/0957-0233/21/6/065201
 5 S. Sonmezoglu, S. E. Alper, and T. Akin: J. Microelectromech. Syst. 23 (2014) 284. https://doi.org/10.1109/

JMEMS.2014.2299234
 6 H. Sheng and T. Zhang: Measurement 59 (2015) 63. https://doi.org/10.1016/j.measurement.2014.09.041
 7 G. Zhanshe, C. Fucheng, L. Boyu, C. Le, L. Chao, and S. Ke: Microsyst. Technol. 21 (2015) 2053. https://doi.

org/10.1007/s00542-015-2645-x
 8 G. Sheng, G. Gao, and B. Zhang: Micromachines 10 (2019) 608. https://doi.org/10.3390/mi10090608
 9 J. Georgy, A. Noureldin, M. J. Korenberg, and M. M. Bayoumi: IEEE Trans. Intell. Transp. Syst. 11 (2010) 856. 

https://doi.org/10.1109/TITS.2010.2052805
 10 J. Fang and J. Li: IEEE Trans. Instrum. Meas. 58 (2009) 2923. https://doi.org/10.1109/TIM.2009.2016780
 11 I. P. Prikhodko, A. A. Trusov, and A. M. Shkel: Sens. Actuators, A 201 (2013) 517. https://doi.org/10.1016/j.

sna.2012.12.024
 12 Z Wang, J Zhou, Y Lei, and W Du: Mech. Syst. Sig. Process. 162 (2022) 108018. https://doi.org/10.1016/j.

ymssp.2021.108018 
 13 Z. Wang, N. Yang, and N. Li: Struct. Health Monit. (2021) https://doi.org/10.1177/1475921720986945
 14 Z. Wang, W. Zhao, W. Du, N. Li, and J. Wang: Process Saf. Environ. Prot. 149 (2021) 591. https://doi.

org/10.1016/j.psep.2021.03.016
 15 M. Cui, Y. Huang, W. Wang, and H. Cao: Micromachines 10 (2019) 248. https://doi.org/10.3390/mi10040248
 16 Q. Fu, X. P. Di, W. P. Chen, L. Yin, and X. W. Liu: Mod. Phys. Lett. B 31 (2017). https://doi.org/10.1142/

S0217984917500646
 17 Q. Zheng, L. Dong, D. H. Lee, and Z. Gao: IEEE Trans. Control Syst. Technol. 17 (2009) 1432. https://doi.

org/10.1109/TCST.2008.2008638
 18 J. Fei and J. Zhou: IEEE Trans. Syst. Man Cybern. Part B Cybern. 42 (2012) 1599. https://doi.org/10.1109/

TSMCB.2012.2196039
 19 H. Cao, Z. Zhang, Y. Zheng, H. Guo, R. Zhao, Y. Shi, and X. Chou: Shock Vib. 2021 (2021) 1. https://doi.

org/10.1155/2021/8855878



Sensors and Materials, Vol. 33, No. 8 (2021) 2855

 20 N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu: Proc. 
R. Soc. A-Math. Phy. 454 (1998) 903. https://doi.org/10.1098/rspa.1998.0193

 21 G. Cheng, H. Li, X. Hu, X. Chen, and H. Liu: Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 231 (2017) 
2706. https://doi.org/10.1177/0954406216638885

 22 K. Dragomiretskiy and D. Zosso: IEEE Trans. Signal Process. 62 (2014) 531. https://doi.org/10.1109/
TSP.2013.2288675

 23 X. B. Wang, Z. X. Yang, and X. A. Yan: IEEE/ASME Trans. Mechatron. 23 (2018) 68. https://doi.org/10.1109/
TMECH.2017.2787686

 24 T. Ma, H. Cao, and C. Shen: Electronics 9 (2020) 499. https://doi.org/10.3390/electronics9030499
 25 J. K. Shiau, D. M. Ma, C. X. Huang, and M. Y. Chang: Adv. Mater. Res. 255 (2011) 2077. https://doi.

org/10.4028/www.scientific.net/AMR.255-260.2077
 26 D. Xia, L. Kong, Y. Hu, and P. Ni: Meas. Sci. Technol. 26 (2015) 1. https://doi.org/10.1088/0957-

0233/26/2/025101
 27 Y. Li, M. Xu, Y. Wei, and W. Huang: Measurement 77 (2016) 80. ht tps://doi.org/10.1016/j.

measurement.2015.08.034
 28 H. Cao, R. Cui, W. Liu, T. Ma, Z. Zhang, C. Shen, and Y. Shi: Sens. Rev. 41 (2021) 2. https://doi.org/10.1108/

SR-09-2020-0205
 29 Y. Wang, R. Markert, J. Xiang, and W. Zheng: Mech. Syst. Signal Process. 60 (2015) 243. https://doi.

org/10.1016/j.ymssp.2015.02.020
 30 B. Samanta: Mech. Syst. Sig. Process. 18 (2004) 625. https://doi.org/10.1016/S08883-270(03)000207-
 31 A. Gálvez and A. Iglesias: Appl. Soft Comput. 13 (2013) 1491. https://doi.org/10.1016/j.asoc.2012.05.030
 32 X. Wang, J. Wang, and M. Privault: J. Intell. Fuzzy Syst. 35 (2018) 4141. https://doi.org/10.3233/JIFS-169735
 33 S. Wang, N. Zhang, L. Wu, and Y. Wang: Renewable Energy 94 (2016) 629. https://doi.org/10.1016/j.

renene.2016.03.103
 34 F. C. Morabito, D. Labate, F. L. Foresta, A. Bramanti, G. Morabito, and I. Palamara: Entropy 14 (2012) 1186. 

https://doi.org/10.3390/e14071186

About the Authors

 Jingru Wei is currently an undergraduate student at the School of Instrument 
and Electronics, North University of China, Taiyuan, Shanxi, China. Her 
research interests lie in MEMS inertial devices. (jingru_www@163.com)

 Zekai Zhang is currently an undergraduate student at the School of 
Instrument and Electronics, North University of China, Taiyuan, Shanxi, 
China. His research interests lie in MEMS inertial devices.

  (zhangzekai_2000@163.com)



2856 Sensors and Materials, Vol. 33, No. 8 (2021)

 Huiliang Cao received his PhD degree in instrument science and technology 
from Southeast University, Nanjing, China, in 2014. From 2011 to 2012, he 
was a research PhD student in the School of Electrical and Computer 
Engineering in Georgia Institute of Technology, Atlanta, USA. He is one of 
the Top Young Academic Leaders of Higher Learning Institutions of Shanxi 
and Young Academic Leaders of North University of China. He is currently a 
postgraduate tutor and associate professor of the School of Instrument and 
Electronics, North University of China, Taiyuan, Shanxi, China. His research 
interests include MEMS inertial devices. (caohuiliang1986@126.com)

 Xiaomin Duan received his PhD degree in instrument science and technology 
from North University of China, Taiyuan, China, in 2015. He is currently a 
postdoctoral researcher at the School of Electronic Science and Engineering, 
University of Electronic Science and Technology of China, Chengdu, China. 
His research interests are in the fields of inertial sensors and systems. 

  (dxm@uestc.edu.cn)


