
1727Sensors and Materials, Vol. 33, No. 5 (2021) 1727–1737
MYU Tokyo

S & M 2567

*Corresponding author: e-mail: onogi@nakajimalab.org
https://doi.org/10.18494/SAM.2021.3338

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

Improvement of Fiducial Planar Marker Tracking 
by Integration with Gyroscope

Shinya Onogi,* Takaaki Sugino, Toshihiro Kawase, and Yoshikazu Nakajima

Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 
2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 101-0062, Japan

(Received February 18, 2021; accepted April 22, 2021)

Keywords:	 fiducial planar markers, sensor fusion, positional tracking

	 A fiducial planar marker is generally used for positional tracking by a single camera. The 
technology is widely applied to entertainment systems and to medical assistance such as surgical 
navigation systems. However, the tracking accuracy is not sufficient for precise navigation; 
therefore, fi ducial marker tracking has not replaced position sensors such as infrared light 
tracking systems. In particular, attitude accuracy is important for tracking because a marker is 
attached to a convenient position of a tracked tool far from the tool’s tip. Therefore, the attitude 
error generates a large positional error at the tip. To address this issue, we propose a method of 
improving fiducial planar marker tracking accuracy by sensor fusion. The proposed tracking 
system consists of a fi ducial marker and a gyroscope, which provides angular velocity. To 
integrate the sensors, a sensor fusion filter based on a Kalman filter was designed. The feasibility 
and performance of the fi lter were validated experimentally by using a three-axis motorized 
rotational stage with potentiometers. The results showed that the root-mean-square error of 
attitude measurement was reduced by the proposed integration method. We confirmed that 
sensor fusion with a gyroscope is feasible for 3D tracking of a fiducial planar marker.

1.	 Introduction

	 Positional tracking is needed for augmented or mixed reality applications such as annotation 
of information, directional guidance, and other entertainment purposes. One of its practical 
applications is navigation, and we have focused on its use in surgical navigation.
	 Among the navigation systems for medical purposes, image guidance, 3D virtual reality, and 
augmented reality (AR) systems have been proposed.(1,2) In image guidance, which is the most 
basic and general approach, surgical plans are shown on intraoperative images such as X-ray and 
echography images. Surgeons can monitor an actual tool position shown in the image with the 
drawn plan. Typical applications are needle insertion for catheter insertion, tumor ablation, and 
bone fracture reduction. In 3D virtual reality, surgical plans, tools, and a 3D model of target 
organs obtained by preoperative CT/MRI are visualized as 3D graphics. This technology is used 
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for orthopedic surgery, brain surgery, abdominal surgery, etc. AR overlays a plan, a tool, and a 
target tissue/organ on a video frame. The advantage of AR is that the information is directly 
drawn on the surgical view.(3) AR is applied to surgeries such as abdominal surgery and brain 
surgery. These clinical navigation systems require a position sensor to track both the patient and 
surgical tool positions in order to integrate virtual and real spaces.
	 For positional tracking, professional tracking systems such as infrared reflective marker and 
magnetic field tracking systems are widely used owing to their high accuracy and reliability. 
However, the tracking systems require a large investment, preventing their widespread use. On 
the other hand, a fiducial planar marker can be tracked by low-cost camera systems such as a 
Web camera, but the accuracy is not sufficient for precise navigation.
	 One of the solutions is to improve the accuracy of fi ducial planar marker tracking. The 
accuracy of marker pose estimation depends on the camera resolution, camera calibration errors, 
and image processing errors for corner detection. However, the accuracy is limited using a 
single-camera system.(4) Thus, another approach is needed to significantly improve the accuracy 
of fiducial planar marker tracking.
	 Inertial measurement sensors (INSs) are widely used for absolute attitude estimation by a 
sensor fusion technique that integrates an accelerometer, a gyroscope, and a magnetometer 
using a Kalman filter.(5) The fused system is called an attitude and heading reference system 
(AHRS). Several studies have reported improved vision tracking accuracy for AR.(6,7) The 
studies validated the superposition accuracy by sensor fusion; however, 3D tracking was not a 
target of the studies. A surgical application of the AHRS to track the attitude of a handheld 
device has also been reported.(8) It was shown that the AHRS can estimate attitude more 
accurately than a conventional electromagnetic tracking system. However, the AHRS can only 
measure the attitude of an attached device itself and cannot provide the relative position and 
attitude among multiple objects to be tracked. As another related work, sensor fusion of a highly 
accurate optical tracking system and INSs has been proposed for the compensation of marker 
occlusion and the augmentation of frequency by using an unscented Kalman filter.(9) 
	 According to the above-mentioned studies, the integration of an INS and a fiducial planar 
maker can potentially improve the 3D tracking accuracy of conventional marker tracking 
without increasing the cost. In this study, the feasibility of 3D attitude tracking by integrating a 
fiducial planar marker and a gyroscope was investigated. The measurement accuracy was 
experimentally validated.

2.	 Sensor Integration Algorithm

	 The strategy of the proposed method is compensation of the x-axis and y-axis directions of a 
fiducial planar marker by using a Kalman filter technique. Figure 1 shows the proposed fused 
marker and a block diagram of the sensor integration algorithm. The algorithm consists of three 
steps: prediction, error estimation, and correction. Then, the filter gives the maximum likelihood 
attitude and gyroscope bias. Details of the steps are described below.
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2.1	 Prediction

	 A three-axis gyroscope provides angular velocity ωk = (ωx, ωy, ωz) including bias and noise,

	 , , ,k True k k Y k+ +=ω ω b v 	 (1)

where ωTrue is the true angular velocity, b is the gyroscope bias, and vY is the gyroscope noise. 
The bias can be modeled by a random walk,

	 1 , .k k b k+ = +b b w 	 (2)

	 Since the actual bias bk is not provided, let the predicted and estimated biases be ˆ
k
−b  and 1

ˆ
k
+
−b , 

respectively.  The predicted bias is equivalent to the estimated bias in the previous step:

	 1.ˆ̂
k k
− +

−=b b 1
ˆ
k
+
−b .	 (3)

	 Using the previous-step bias, the angular velocity ˆk
−ω  is predicted as

	 .ˆˆk k k
− −= − bω ω 	 (4)

	 A small rotation in the sampling period Δt can be expressed as a rotational vector:

	  ,k k k kt nθ− − − −∆ = ∆ =∆r ω 	 (5)

where kθ
−∆  is the predicted rotation angle and kn− is the predicted rotation axis. Then, the 

predicted quaternion of the attitude change in the kth iteration is given as

Fig. 1.	 Block diagram of the integration.
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	 Finally, the kth-step predicted attitude ˆkq− is given by applying the predicted small rotation 
ˆkq−∆  to the previous estimated attitude 1ˆkq+− :

	 1 .ˆ̂̂k k kq q q− + −
−= ⊗∆ 1ˆkq+− ˆ .kq−⊗∆ 	 (7)

2.2	 Error estimation

	 Let the state vector be the 9 × 1 error vector xε,k  with components
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where the 3 × 1 vectors qxε,k and qvε,k are the vector components of the quaternions relating the 
x- and y-axis angular errors between a fi ducial marker and a gyroscope prediction given by 
Eq. (7), respectively, the 3 × 1 vector bε,k models the error of the gyroscope offset bias, and wk is 
the process noise. The error is caused by the sensor noise from the previous step and depends on 
the previous error.
	 The 6 × 1 measurement error vector zk is defined as

	 ,zx
k

zy

ε

ε

 
=   
 

q
z

q 	 (9)

where qzxε and qzvε are the vector components of the quaternions relating the measurement errors 
of the x- and y-axes, respectively. The measurement error vector zk is modeled as being related to 
the error state vector xk through the 6 × 9 measurement matrix Ck and measurement noise vF,k:

	 , .k k k F kC= +z x v 	 (10)

	 Then, the measured x-axis tilt error qzxε, which is derived from the true tilt error qxε, 
gyroscope bias noise ωb,k, gyroscope sensor noise vY,k, and fiducial marker measurement error 
vFx,k, is written as

	 ( ), 1 , , , .
2zx x k b k Y k Fx k
t

ε ε ε
+

−
∆

≈ + − + + +q q b v vω 	 (11)
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	 By applying a similar argument for the y-axis tilt error, the measurement matrix Ck can be 
written as

	
3 3 3

3 3 3
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	 Here, we employed an indirect Kalman filter, in which the previous state vector 1k
+
−x  and state 

matrix Ak are zero. Therefore, the Kalman filter can be written as

	 ( ) 1
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where Qw,k is the covariance matrix of the process noise vector wk, Qv,k is the covariance matrix 
of the measurement noise vector vk, and ,x kε

+q  and ,y kε
+q  are the vector components of the tilt error 

quaternions in the x- and y-axis directions, respectively. The process error covariance matrix 
Qw,k and the measurement error covariance matrix Qv,k, which are obtained from the IMU 
sensor fusion algorithm,(10) are defined as
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	 The estimator gives the maximum likelihood errors of the x- and y-axis directions and the 
gyroscope bias.
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2.3	 Correction of attitude and bias

	 The indirect Kalman filter computes an a posteriori estimate, ,kε
+x . By using the x- and y-axis 

tilt errors, the predicted axes are respectively corrected as follows:

	 ( )*, , ,ˆ̂x x k x x kq qε ε
+ + − +=i i ( )*, ,ˆx kq ε

+ 	 (17)

	 ( )*, , ,ˆ̂y y k y y kq qε ε
+ + − +=i i ( )*, ,ˆy kq ε

+ 	 (18)

where ix and iv are the x- and y-axes, respectively, and ( )*q̂  is the conjugate of the quaternion. 
The gyroscope bias vector k

+b  is also updated by adding the estimated bias error as follows:

	 , .k k kε
+ − += +b b b 	 (19)

	 After the estimated axes are orthogonalized, the rotation matrix R+ can be obtained, and then 
the estimated quaternion ˆkq+  is calculated from the rotation matrix R+.

3.	 Experimental Validation

	 To investigate the performance of the algorithm, measurement experiments were performed.

3.1	 Experimental setup

	 The combined marker consisted of a 20 × 20 mm2 square fiducial marker and a three-axis 
gyroscope (BMX055, Bosch), which were assembled together with their axes aligned. For the 
generation and detection of the fiducial marker, we employed the well-known AruCo 
library.(11,12) The combined marker was attached to a three-axis rotational stage with three 
potentiometers as the ground truth. The gyroscope and potentiometers had I2C interfaces with 
data transfer speeds of 400 and 100 kbps, respectively. They were respectively connected with a 
PC via I2C-USB converters (FT232H, FTDI). A USB camera with 1280 × 920 resolution was 
used for the fi ducial marker measurement. The experimental setup is shown in Fig. 2. The 
intrinsic parameters of the camera were prepared by using a camera calibration algorithm 
provided by OpenCV. The components were connected to a Windows workstation via a USB 
interface.
	 The rotational stage was moved by pivot motion, as shown in Fig. 3, with angles of 30° roll (α) 
and 10° pitch (β) and periods of 3.0, 6.0, and 9.0 s. During the motion, all the sensor data with 
timestamps were recorded by using in-house software written in C++. Then, the attitudes of the 
rotational stage, the fi ducial marker, and the marker fused by the proposed method were 
compared off-line. For the implementation of the Kalman fi lter, the sensor noise and marker 
noise in Eqs. (1), (2), and (10) were manually tuned (vY = 0.03, wb = 1.0 × 10−6, vF = 6.4 × 10−3). 
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To calibrate the coordinate systems of the rotational stage and the USB camera, which is the 
origin of the fiducial marker, the AX = ZB hand-eye-camera calibration algorithm was used.(13)

3.2	 Results

	 As highlighted data, the direction vectors of measured and estimated axes in the 9.0 s pivot 
motion are shown in Fig. 4. The attitudes of the rotational stage (dotted line), the fiducial marker 
(dashed line), and the fused marker (solid line) are shown. The result shows that the measurement 
noise of the fiducial marker was reduced by the marker integration.

Fig. 2.	 Experimental setup of the validation. A 20 × 20 mm2 fiducial marker and a gyroscope were attached to the 
rotational stage. The marker was measured using a USB camera.

Fig. 3.	 Pivot motion of the rotational stage. The motion trajectory is elliptical due to the measurement volume of 
the fiducial marker.



1734	 Sensors and Materials, Vol. 33, No. 5 (2021)

Fig. 4.	 Directional vector components for (left) x-axis and (right) y-axis of the sensor coordinate system during 
pivot motion (dotted line: rotational stage, dashed line: fiducial marker, solid line: fused marker).
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Fig. 5.	 Comparison of rotational angle with linear regression line in the periods of (a) 3.0, (b) 6.0, and (c) 9.0 s; 
(left) fiducial marker vs rotational stage, (right) fused marker vs rotational stage.
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	 To validate the performance of the proposed method, we statistically analyzed the rotation 
angle accuracy. Figure 5 shows the results of linear regression analysis of the rotation angles for 
the measured and ground-truth data in the rotation periods of 3.0, 6.0, and 9.0 s. The regression 
lines and the coefficients of determination R2 were computed. The R2 values were 0.95 for the 
fiducial marker and 0.98–0.99 for the fused marker. The results show that the fused marker can 
measure the rotation angle with better linearity than the raw fiducial marker.
	 Figure 6 shows the results of statistical analysis of the rotation angle measurement in all the 
periods. The numbers of samples nmarker and nfused were 25570 and 25472, respectively. The root-
mean-square errors of the raw and fused rotational angles, indicated as stars, were 3.3 and 2.7º, 
respectively. The errors include three errors: the alignment error between the fiducial marker and 
the gyroscope, the calibration error between the camera and the rotational stage, and the 
mechanical error of the stage. The results show that the rotation angle errors were reduced 
(p < 0.001).

4.	 Discussion

	 The experimental results show that the proposed method measured the attitude of an object 
with higher accuracy. The designed filter compensates the detected x- and y-axes of a fiducial 
planar marker by using a gyroscope. The performance of Kalman fi lters depends on the 
modeling parameters, especially the process and measurement error covariances. In the present 
implementation, the measurement error covariance has been defined as a constant value; 
however, the measurement error covariance in a fiducial marker will change with the attitude 
and the distance from a camera. Therefore, a dynamically tuned error covariance would provide 
a better estimation in the future.

Fig. 6.	 Comparison of the rotational angle error between raw fiducial marker data and fused data. The stars 
indicate the root-mean-square error of each data set. Each box shows the first quartile, the third quartile, the median, 
and whiskers corresponding to 1.5 interquartile ranges (IQRs).
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5.	 Conclusions

	 In this study, we proposed an algorithm for integrating fiducial planar marker tracking and a 
gyroscope to improve tracking accuracy without increasing the cost. We confirmed that sensor 
fusion with a gyroscope is feasible for the 3D attitude tracking of a fiducial planar marker.
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