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 To produce a good machine tool, the thermally induced error in the machine during 
machining plays a crucial role and is an important issue needing to be resolved. The thermal 
error may account for 70% of the total error. There are three main approaches to solving the 
thermal error problem: preventing heat flows from hot components, designing a thermally stable 
structure for the machine, and compensating the thermal error using thermal error models. 
The first two approaches can be carried out in the primary design stage of machine tools, 
and they have been used in the manufacture of commercial products. The third approach, the 
strategy of thermal error compensation, is the most effective and popular approach. However, 
there are still many unsolved problems. Among these problems, the cutting conditions have a 
significant influence on the modeling precision of the thermal error. In this study, we develop 
an integral model based on the integrated grey system theory (IGST) in conjunction with a 
genetic-algorithm (GA)-optimized back-propagation neural network (BPNN) to investigate 
the influence of cutting conditions on a machine tool’s thermal error. The model is chosen on 
account of its high ability in dealing with a small amount of training data. Results show that a 
single thermal error modeling formula cannot make accurate predictions for different cutting 
conditions. Suitable adjustment of the modeling parameters or the use of a multiple modeling 
scheme is needed. 

1. Introduction

 Machining accuracy is the most important goal of machine tool producers. Among the 
errors occurring in machining, such as the vibration error, thermal error, kinematic error, tool 
deformation error, and wearing error between moving components, the thermal error, induced 
by deformation due to the temperature variation, is the primary cause of machining inaccuracy. 
The thermal error may account for over 70% of the total error.(1) From careful observations, 
there are two types of heat sources in machining, called internal and external heat sources. 
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The internal heat sources include heat generated in servo motors, metal cutting processes, and 
various frictions arising from motion in mechanisms such as spindles, bearings, ball screws, 
belts, gears, and guideways. The external heat sources include room temperature changes, solar 
radiation, and human bodies. To reduce the thermal error, three main approaches are usually 
used: avoidance of thermal deformation, control of the heat flow, and compensation of thermal 
error.(2) Among these methods, thermal error compensation is not only easy but also efficient.(3–20) 
Thus, it is the most commonly used way of enhancing the machining accuracy of machine 
tools. Generally speaking, a thermal error compensation procedure includes the following 
steps. First, suitable experimental conditions are set in order to simulate the machining 
conditions of the target machine. Second, characteristic points on the machine are determined 
for temperature measurements. Third, an appropriate integrated measuring system is set up, 
then the deformation of the tool tip and the temperature at the chosen characteristic points 
are simultaneously detected. Fourth, a robust thermal error model is built that well describes 
the relationship between temperature rises and thermal displacements. Fifth, the established 
thermal error model is verified via experiments. 
 Despite the issues of thermal error compensation of machine tools, which have been studied 
for a long time, there still remain some unsolved problems, such as how to establish a robust 
and precise thermal error model for different kinds of machines. One of the key issues that 
determine the effectiveness of a thermal error model is the machining conditions in modeling 
experiments. Many past studies considered only the thermal deformation of the spindle since it 
is the main component that is deformed in machine tools. Therefore, only the spindle rotational 
velocity was considered as the parameter in setting the experimental cutting conditions.(2,10,11) 
However, thermal deformation may occur in any component of a machine. Thus, more 
parameters should be considered when setting experimental cutting conditions. Raja et al.(7) and 
Wang et al.(9) adopted the parameters of spindle rotational velocity and feeding speed in setting 
experimental cutting conditions. Note that no previous studies have systematically considered 
the effect of changing the parameters that influence the cutting conditions. 
 Different machining conditions usually generate different amounts of heat and therefore 
result in different temperature distributions and thermal displacements in the machine structure. 
Machining conditions significantly influence the method of building a thermal error model as 
well as its prediction ability. To address the aforementioned matters, in this study, we investigate 
the influence of different machining conditions on the thermal behavior of a machine structure 
and build a thermal error model. A computer numerical control (CNC) vertical machining 
center is chosen as the investigation target (made by Taiwan’s Litz machinery company, model 
DV-1000), as illustrated in Fig. 1. 

2. Analysis of Machining Conditions 

 In general, the machining conditions of a CNC machine tool are determined by the shape 
and material of the work pieces and its functions as well as capabilities (such as the maximum 
rotational speed of the spindle and the linear feeding speed). In machining experiments toward 
building a thermal error model, the following variations of parameters are usually taken into 
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consideration: (1) different machining types: cutting, milling, and drilling; (2) different spindle 
speeds: low, middle, and high; (3) different work piece materials: soft, medium, and hard; 
(4) different cutting depths: shallow, medium, and deep; (5) different feeding speeds: small, 
medium, and large; (6) different machining paths: idle, continuous cutting, periodic cutting, and 
non-periodic cutting.
 Here, we take into consideration items (2), (3), and (6). For items (3) and (6), we choose two 
machining paths, which are non-periodic soft and periodic hard cutting paths. The non-periodic 
soft cutting condition includes a range from low to high speeds (containing the rotational speed 
of the spindle and the feeding speeds along the X, Y, and Z axes). The parameters of the above 
two machining conditions are shown in Table 1.
 
3. Measurements of Thermal Deformation and Temperature 

3.1 Measurement system and thermal key points

 The experimental measurement setup is mainly composed of sensors, wires, and a 
control-and-monitor box. The sensing unit includes temperature and displacement sensors. In 
temperature measurement, resistance thermometers (PT100) were used to detect the variation 
of temperature at different thermal key points on the machine body, and eddy-current-type 

Fig. 1. (Color online) Target CNC vertical machining center.

Table 1
Non-periodic soft and periodic hard machining conditions.
S

F

1st section

0–30 min

2nd section

30–60 min

3rd section

60–90 min 

4th section

90–120 min
Non-periodic cutting case

Soft cutting
(Aluminum)

S: 1000 rpm
F: 10 m/min

S: 2000 rpm
F: 20 m/min

S: 3000 rpm
F: 30 m/min

S: 4000 rpm
F: 40 m/min

Periodic cutting case
Hard cutting
(SC45)

S: 2000 rpm
F: 20 m/min

S: 4000 rpm
F: 40 m/min

S: 2000 rpm
F: 20 m/min

S: 4000 rpm
F: 40 m/min

S: Spindle speed, F: Feeding speed along X, Y, and Z axes
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displacement sensors were used to detect the deformation due to thermal expansion at the front 
end of the spindle in the X, Y, and Z directions. The thermal key points for the temperature 
measurements should be carefully chosen because the number of sensors and their locations 
significantly affect the effectiveness of compensation when building a thermal error model. 
Past studies(21,22) revealed that thermal key points should be selected that (1) are close to the 
major heat sources, (2) have the ability to reflect the temperature field of the target system, 
and (3) are strongly connected to the thermal deformation. On this basis, 11 thermal key points 
were chosen, as listed in Table 2. Their positions are shown in Fig. 2. In addition, several 
eddy-current displacement sensors were pasted on the leading end of the spindle to detect 
displacements.

3.2 Temperature and displacement measurements

 An integral measurement unit, including temperature and displacement sensors, was 
installed to synchronically retrieve readings of temperature and deformation. An experiment 
on thermal error modeling was performed via an integrated measurement system using the 
aforementioned soft and hard cutting conditions. The measured temperatures at the 11 thermal 
key points in the soft cutting case are shown in Fig. 3. It is revealed that, for all 11 thermal key 
points, temperatures vary from 25 °C (room temperature) to a maximum of 53.1 °C in the soft 
cutting case. Overall, the temperatures at the 11 points had an approximately linear relationship 
with time, with the smallest slopes for sensors T6, T3, and T2. In the hard cutting case, the 
temperatures varied from room temperature of 25 °C to a maximum of 63.1 °C. For each cutting 
condition, the temperature variations were different at different thermal key points. 
 The thermal drifts of the spindle nose in the X, Y, and Z directions (respectively denoted as 
UX, UY, and UZ) for both cutting conditions were also obtained and are shown in Fig. 4 (soft 
cutting case) and Fig. 5 (hard cutting case). It is revealed that the maximum thermal drifts of the 

Table 2
Locations of thermal key points.

Sensor Location
T1 Environment
T2 Spindle back-end
T3 Spindle front-end
T4 X-axis servo motor
T5 Y-axis servo motor
T6 Z-axis servo motor
T7 Upright column
T8 Base
T9  Y-axis ball screw
T10 X-axis ball screw
T11 Z-axis ball screw

Fig. 2. Thermal key points.



Sensors and Materials, Vol. 33, No. 1 (2021) 419

spindle leading end in the X, Y, and Z directions are +68 µm (UX), −42 µm (UY), and −113 µm (UZ) 
in the soft cutting case and +58 µm (UX), −35 µm (UY), and −93 µm (UZ) in the hard cutting 
case, respectively.

4. Mathematical Modeling of Thermal Error

4.1 Modeling topology

 In modeling the thermal error, we adopt a novel method based on the integrated grey 
system theory (IGST), which includes grey system theory (GST), in conjunction with a back-

Fig. 3. Measured temperatures at thermal key points in soft cutting case.

Fig. 4. Thermal drifts in non-periodic soft cutting case.

Fig. 5. Thermal drifts in periodic hard cutting case.
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propagation artificial neural network (ANN) optimized by the genetic algorithm (GA) to 
construct the thermal error model of the target machine tool. GST is a powerful tool for 
analyzing a problem with spare data, which matches the nature of our thermal error modeling 
problem. An ANN is a supervised machine learning scheme that has high mapping ability 
for multiple-input and multiple-output problems, and is especially suitable for establishing 
nonlinear relationships between parameters. ANNs have been successfully applied in a wide 
range of areas, encompassing finance, personal communication, industry, and education. 
Furthermore, the GA is an excellent artificial intelligence method for handling optimization 
problems, which can be merged with an ANN to obtain optimal parameters in an IGST network. 
Simply speaking, the IGST scheme is the combination of the GM(1, N) model of GST and the 
back-propagation neural network (BPNN) of an ANN, whose parameters are optimized by the 
GA. 
 The GM(1, N) model is an important part of theorems in GST(23) and is a grey prediction 
model using a first-order differential equation to establish the correlation among N variables. 
The GM(1, N) model is introduced as follows. First, we consider an original sequence of data. 
Second, we accumulate this sequence of data once. It is assumed that this accumulated data of N 
variables will have a certain correlation obtained from a first-order differential equation. Third, 
we solve this first-order differential equation to find a curve to fit this accumulated data with N 
variables. 
 Supposing there is an original sequence of data x(0):

 { } { }(0) (0)(0) (0) (0)
1 21, 2, 3, ..., , , ...,i nz z i n z z z= = = . (1)

 A first accumulation involving addition is carried out for the above original data sequence 
z(0) to obtain a new data sequence z(1) as follows:

 { }
1 2

(0)(1) (1) (0) (0) (0)
1

1 1 1
1, 2, 3, ..., , , , ...,

n

i j j j
j j j

z z i n z z z z
= = =

  = = =  
  

∑ ∑ ∑ . (2)

 On the basis of the new data sequence z(1), we establish the following relationship between 
the n variables in the form of a first-order differential equation:

 
(1)

(1)dz az U
dt

+ = . (3)

 We solve the above first-order ordinary differential equation to obtain 

 (0)*(1) ( 1)
1( / ) /a t

tz z U a e U a− −= − + , (4)

where *(1)
tz  means the estimated value of (1)

tz . Then, we perform an accumulated subtraction for 
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*(1)
tz . A final estimated value of (0)

tz , denoted *(0)
tz , is obtained, where

 *(1)*(0) *(1)
1t t tz z z −= − , t = 2, 3, … (5)

 For the sake of convenience, the following variables are defined. The data sequence (0)
tz  is 

changed to η(t), (1)
tz  is changed to σ(t), and *(1)

tz  is changed to φ(t).
 In our investigation, we have three dependent variables of the thermal drift, denoted y1 
(UX), y2 (UY), and y3 (UZ), and 11 independent variables of temperatures at thermal key 
points, denoted X1–X11. According to the GM(1, N) model, we may construct the correlation 
between the dependent variables (e.g., y1) and independent variables (e.g., X1–X11) based on the 
assumption of the first-order differential equation 

 1
1 1 2 2 3 11 12

d a b b b
dt
σ σ σ σ σ+ = + + + , (6)

where σ1 = y1, σ2 = X1, σ3 = X2, …, σ12 = X11. The solution of this first-order differential 
equation is obtained as 

 *
1 1 1

1 1( ) ( (0) ) (0) 2 (1 )
1 1

at
at att d d e

e e
σ σ σ −

− −
 = − − ⋅ + ⋅ ⋅ + + + 

, (7)

where

 1 2 12
2 3 12( ) ( )b b bd t t

a a a
σ σ σ= + + + . (8)

 Equations (7) and (8) can be combined into the BPNN to form an IGST topology with n 
inputs and one output, which is illustrated in Fig. 6. There are four layers in the IGST topology, 
named Layer-A, Layer-B, Layer-C, and Layer-D. The input parameters are set as σ2(t), 
σ3(t), …, σ12(t). The connecting weights of the network are denoted by ω11 = a between Layer-A 
and Layer-B; ω21 = −y1(0), ω22 = 2b1/a, ω23 = 2b2/a, …, and ω2n = 2bn−1/a between Layer-B and 
Layer-C; and ω31 = ω32 = ∙∙∙ = ω3n = 1 + e−at between Layer-C and Layer-D. The threshold value 
of Layer-D is

 θ(t) = (1 + e−at)(d + y1(0)). (9)

 Other related parameters in the layers are defined as follows:
In Layer-A (one neuron): A = ω11t,
In Layer-B (one neuron): B = f(ω11t) = 1/(1 + e−ω11t),
In Layer-C (13 neurons): C1 = Bω21, C2 = ξ2(t)Bω22, ..., C1n = ξn(t)Bω2n (n = 12),
In Layer-D (one neuron): e = ω31C1 + ω32C2 + ∙∙∙ + ω3nCn − θ(t) (n = 12).
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 The total error is calculated as the difference between the network output and the expected 
value,

 δ = e – y1(t). (10)

 Furthermore, by using the above equations of the error δ, weights ω, and threshold values 
θ(t), the network parameters may be adjusted until convergence. 

4.2 Model building 

 From measurements, we obtained 30 data pairs (taken every 4 min over a total measurement 
time of 120 min) for both the periodic soft and non-periodic hard cutting cases to train the IGST 
topology. Moreover, we used the scheme of the GA in IGST to optimally search for extreme 
values and enhance the convergence speed of the error. It took 42 and 53 iterations to train the 
IGST network for the soft and hard cutting cases, respectively, to reach the error convergence 
criterion of 0.005 µm. The obtained influence weightings (|b1|–|b11|) of the characteristic 
temperatures (T1–T11) on UZ, UX, and UY for the soft cutting case are shown in Figs. 7–9, 
respectively, and those on UZ, the most important influential thermal drift in the machine, in 
the hard cutting case are shown in Fig. 10. For the soft cutting case, the influences of T1, T7, 
T8, and T9 (i.e., |b1|, |b7|, |b8|, and |b9|) on all three thermal drifts are negligible. The other key 
temperatures have similar influences in the sequence

 2 3 6 4 5 11 10( 1) ( 3) ( 6) ( 4) ( 5) ( 11) ( 10)b T b T b T b T b T b T b T> > > > > > , (11)

Fig. 6. (Color online) Topology of IGST.
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but have different magnitudes. On the other hand, comparing the results of the soft and hard 
cutting cases, it is found that the influential sequence for the hard cutting case changes to

 2 6 3 4 5 11( 2) ( 6) ( 3) ( 4) ( 5) ( 11)b T b T b T b T b T b T> > > > > . (12)

For both cases, it is found that five thermal key temperatures, T1, T7, T8, T9, and T10, have 
negligible influence on all three thermal drifts.
 Furthermore, the obtained maximal errors (relative errors) between the predicted and 
measured thermal drift for the soft and hard cutting cases are 0.00363 and 0.00417 mm, 
respectively. Both training results are excellent, suggesting the high performance of the 
proposed method. 

4.3 Discussion 

 To evaluate the prediction ability of the IGST topology with fixed parameters under different 
cutting conditions, we adopt the key temperature data from the hard cutting measurement as the 

Fig. 7. (Color online) Temperature inf luences 
(weightings: |b1|–|b11|) at thermal key points (T1–T11) 
on the thermal deformation UZ in non-periodic soft 
cutting case. 

Fig. 8. (Color online) Temperature inf luences 
(weightings: |b1|–|b11|) at thermal key points (T1–T11) 
on the thermal deformation UX in non-periodic soft 
cutting case.

Fig. 9. (Color online) Temperature inf luences 
(weightings: |b1|–|b11|) at thermal key points (T1–T11) 
on the thermal deformation UY in non-periodic soft 
cutting case. 

Fig. 10. (Color online) Temperature inf luences 
(weightings: |b1|–|b11|) at thermal key points (T1–
T11) on the thermal deformation UZ in periodic hard 
cutting case. 
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input and apply the IGST topology and parameters obtained in the soft cutting case. In this way, 
we obtain a prediction result for thermal drift that has a maximal error value of 0.0891 mm. In 
contrast, if we adopt the key temperature data from the soft cutting measurement as the input 
and apply the IGST topology and the parameters obtained in the hard cutting case, we obtain 
a prediction result of thermal drift that has a maximal error of 0.0929 mm. It is found that 
although we used the same thermal error prediction topology for both the soft and hard cutting 
cases, their compensation results are different because of the different trained parameters. 
Using the thermal error model of IGST and its trained parameters established under the soft 
cutting condition to predict the thermal drift under the hard cutting condition would lead to a 
22.27 times larger error (0.929 mm/0.00417 mm), which is obviously unsatisfactory. Finding 
a universal thermal error model with fixed parameters to well predict the thermal errors for 
different cutting conditions is not possible here. Furthermore, if the type of machine is changed, 
the thermal behavior of the machine will also be different. Therefore, both the model topology 
as well as its parameters should be changed to obtain an optimal prediction result. 

5. Conclusions 

 For tool machinery, the cutting conditions have a huge effect on the machining precision 
as well as on the thermal compensation results. Various cutting conditions will cause different 
thermal flows in a machine’s body and result in a variety of temperature distributions and 
thermal drifts in the machine. We found that using the integrated GA-optimized grey neural 
network scheme as the thermal model is suitable for the thermal compensation for a C-type 
CNC machining center such as that in this study. However, under the constraint of a preset 
convergence criterion, the trained topology parameters of the IGST network are different 
for soft and hard cutting conditions. It is highly noteworthy that using the thermal error 
model of IGST and its trained parameters established under the soft cutting condition to 
predict thermal drift under the hard cutting condition would lead to a 22.27 times larger error 
(0.929 mm/0.00417 mm). It should also be noted that a thermal error model built with fixed 
trained parameters under a certain cutting condition is no longer suitable when the cutting 
conditions are changed. In the future, more investigations will be conducted to study heat 
deformations and their suitable thermal compensation models for other complicated cutting 
conditions.
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