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	 In diagnostic ultrasound, an ultrasound transducer converts an electrical signal into an 
ultrasound pulse, which enters the tissue from the body surface.  At the surface, an echo 
appears.  The probe senses and receives the echo, and all the echoes are converted back to 
signals and graphics, which can be analyzed by medical staff.  We studied the neural network 
(NN)-based classification of hepatocellular carcinoma (HCC) and liver abscess using texture 
features of ultrasound images.  From 79 cases of liver diseases (44 liver cancer and 35 liver 
abscess cases), we extracted 52 features of the gray-level co-occurrence matrix (GLCM) and 
44 features of the gray-level run-length matrix (GLRLM), giving a total of 96 features.  We 
used three feature selection models to distinguish these two liver diseases: sequential forward 
selection (SFS), sequential backward selection (SBS), and F-score.  We proved that our 
developed system can be used to classify liver cancer and liver abscess using an NN with an 
accuracy of 88.375%, which can provide diagnostic assistance for inexperienced clinicians.

1.	 Introduction

	 There are many liver diseases, for example, liver cancer (hepatocellular carcinoma, HCC) 
and liver abscess.  Liver cancer has a high mortality rate.  Depending on the stage of the 
disease, the treatment also varies between surgery, radiation therapy, chemotherapy, tumor 
ablation, embolization therapy, targeted therapy, and many others.  Even though liver biopsy is 
effective for obtaining a correct diagnosis, it may generate side effects in patients such as pain, 
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infection, or injuries in the subsequent treatment.  Because of the various risks and undesired 
effects, there are many other approaches to help diagnose liver disease.  Ultrasound imaging is 
a feasible approach, and a computer-aided diagnosis (CAD) system can help an inexperienced 
clinician in diagnostic evaluation.
	 Medical ultrasound imaging is based on the pulse–echo principle.  An ultrasound transducer 
converts an electrical signal into an ultrasound pulse, which enters the tissue from the body 
surface.  At the surface, an echo appears.  The probe senses and receives the echo, and all the 
echoes are converted back to signals and graphics, which can be seen by medical staff.  In 
medical ultrasound, a coupling gel is used as a universal medium to avoid excessive reflection 
caused by the tiny amount of air between the probe and the skin.(1,2) 
	 On the other hand, neural networks (NNs) are a powerful technique for solving research 
problems.  For example, a radial basis function NN is used to design a control law for a 
derived mathematical kinematic model of mobile robots.(3,4)  Chien et al. applied a multilayer 
perceptron (MLP) NN to an impulse noise detector for power-line-based sensor networks.(5) 
Moreover, an MLP NN has been applied to classification for biomedical image processing.(6) 
Here, we propose NN-based classification for the CAD of images obtained from ultrasound 
imaging, which has several advantages over liver biopsy such as no radiation risk, low cost, 
easy operation, and non-invasiveness.  We applied the gray-level co-occurrence matrix 
(GLCM)(7–9) and the gray-level run-length matrix (GLRLM)(7,10) as textural features with three 
feature selection models: sequential forward selection (SFS),(7,9,11) sequential backward selection 
(SBS),(7,9,12) and F-score.(7,13)

2.	 Feature Extraction

	 We retrieved the images for analysis from the Medical University Hospital in Taipei, which 
consisted of 44 cases of HCC and 35 cases of liver abscess: in total, 79 cases of liver disease.  
For each case, we selected a 32 × 32-pixel region of interest (ROI) inside marked boundaries and 
converted it to a 256-grayscale BMP file using MATLAB for convenient processing as shown 
in Fig. 1.  We sampled 400 ROIs from the images for each disease, which were used for training 
and testing.  From each of the ROIs, we extracted 96 features (52 GLCMs and 44 GLRLMs).  
The GLCM(7–9) is represented by a matrix depicting how different combinations of gray levels 
exist in an image.  
     The GLCM feature extraction method consists of two steps: (1) co-occurrence matrix 
calculation and (2) the computation of texture features from the co-occurrence matrix.  The 
GLCM feature extraction results, also called the Haralick features, are extracted from each 
image and shown in Table 1.  The other method employed in this research is the use of the 
GLRLM(7,9) to compute four matrices for horizontal, vertical, and diagonal directions, i.e., 0, 45, 
90, and 135°, to produce a run-length matrix.  The results of the calculation are called texture 
descriptors, and each descriptor is unique for each texture.  We extracted the 11 most often used 
features from the run-length matrices, which are shown in Table 2.
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Fig. 1.	 (Color online) Input ultrasound image to be processed.

Table 1
GLCM features.
Code Feature Equation Value
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3.	 Feature Selection

	 The main idea of our feature selection methods is to keep the useful features while 
eliminating those that contain little or no predictive information.  The advantages of 
using feature selection are reduced computation and cost, improved accuracy, and greater 
understanding of the difference between HCC and liver abscess.  We used three feature 
selection methods: SFS, SBS, and F-score.  
	 The SFS method starts with an empty set and adds the next selected feature x* = argmax[J(Yk + x)]  
with  ,kx Y∉ , in which J(Yk + x) is the highest objective function.  This is repeated continuously 
until a predefined number of features are selected.  SBS works the opposite way: it starts from 
a full set of features and removes the worst feature continuously until a predefined number of 
features are left.  
	 The F-score measures discrimination from a given training vector.  The higher the F-score, 
the more it discriminates between the positive and negative sets.  The disadvantage of the 

 Table 2
 GLRLM features. 
Code Feature Equation Value
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F-score is that it cannot reveal shared information between features.  We used two F-score 
methods.  The first method, called the search-all method, computed all the features.  The second 
method, called the threshold method, selected four thresholds for each feature and six thresholds 
for all features (discussed in Sect. 6) where the gap between the low and high F-scores is 
considerable.

4.	 NN

	 Recently, numerous research studies have been carried out on NNs.  This is because they 
are powerful for performing complex tasks in a wide range of fields, such as system control,(3,4) 
communication,(5) and medical diagnosis.(6)  We used a feedforward neural network (FFNN) 
based on a backpropagation (BP) learning algorithm with one hidden layer and 10 nodes.(14,15)  
When a sample xp = (xp1, xp2, ..., xpR)T is input into the FFNN, it is distributed among the hidden 
layers, as shown by the structure in Fig. 2.  The output h

pjo  of the jth node on the hth hidden 

layer with input h
pjnet  can be calculated as

	 ( ) ( )
( )

1 exp 2

1 exp 2

h
pjh h h

pj j pj h
pj

net
o f net

net

− − ⋅
= =

+ − ⋅
,	 (1)

in which ,1
mh h h

pj j i pi jinet w x θ
=

= +∑ , with ,  h
j iw  being the weight of the connection from the ith 

hidden layer to the jth hidden layer.  h
jθ  and h

jf  denote the bias and transfer functions of the jth 
hidden node, respectively.  Similarly, the output value of the kth output node can be calculated 
as

Fig. 2.	 (Color online) Structure of whole NN.
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hidden layer to the kth hidden layer.  o
kθ  and o

kf  denote the bias and transfer functions of the 
kth output node, respectively.  At the beginning, we assigned the initial weights and thresholds 
randomly, updating them at every iteration to minimize the difference or the mean square error 
E between the output and the target.  The weights between the layers were updated in each 
iteration by the gradient-descent rule as follows:

	 new oldw w w= + ∆ ,	 (3)

where , ,
, ,

, o o
k j k io o

k j k i

E Ew w
w w

η η∂ ∂
∆ = −   ∆ = −

∂ ∂
, and η is a step size in the range [0.01,1] in the 

formula for updating the weight from the jth layer to the kth layer and from the ith layer to the 
kth layer in the output node.  We used 0.1 as the step size for 1000 iterations.

5.	 Performance Evaluation

	 One of the most popular methods of evaluating a model’s prediction performance is cross-
validation.  There are two commonly used cross-validation methods, leave-one-out cross-
validation (LOOCV) and k-fold cross-validation.  We used k-fold cross-validation, more 
specifically, 10-fold cross-validation, because it has the advantage of using all samples in both 
training and validation.  We partitioned all the samples randomly into 10 groups of the same 
size and used one group for testing and the others for training.  We repeated the process until all 
the groups were tested, then all the results were averaged to a single estimation, which is called 
the true accuracy defined as

	
1

1 k

i
i

Acc Acc
K =

= ∑ .	 (4)

	 Then, the accuracy factor, which represents the performance of the classifier, was estimated 
as

	 TP TNAccuracy
TP TN FP FN

+
=

+ + +
,	 (5)

in which TP, TN, FP, and FN denote true positive, true negative, false positive, and false 
negative, respectively.
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6.	 Results and Discussion

	 The NN-based classification system we built was trained using several different sets of 
features: only GLCM features, only GLRLM features, and both GLCM and GLRLM features.  
The classification results of training with GLCM features, GLRLM features, and both GLCM 
and GLRLM features obtained with the F-score feature selection method are shown in Figs. 
3–5, respectively.  There are a total of 52 GLCM features (Feature 1 to Feature 52) and a total 
of 44 GLRLM features (Feature 53 to Feature 96).  We calculated and added features based on 
their F-score in descending order to train the network and compute the accuracy.  Details of 
the feature extraction are given in Ref. 7.  The F-score of the GLCM feature extraction method 
was as high as 0.225.  When Feature 52 was added, the accuracy reached 80.75% (Fig. 3).  For 
GLRLM, the highest F-score was 0.5 and the accuracy increased to 81.5% (Fig. 4) when Feature 
96 was added, then decreased.  By combining GLCM and GLRLM features, we can obtain 

Fig. 3.	 (Color online) Results of NN-based classification using GLCM features.

Fig. 4.	 (Color online) Results of NN-based classification using GLRLM features.
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an accuracy of up to 88.375% based on their F-scores up to Feature 76 (Fig. 5).  Table 3 shows 
the classification results obtained using different feature selection methods.  It can be seen that 
using feature selection models generally gives better results, except for SFS.  The best result 
was obtained using the F-score search with the search-all method, which had an accuracy of 
88.375%.  

7.	 Conclusion

	  Medical ultrasound is one of the diagnostic imaging techniques.  It has several advantages, 
such as no radiation risk, low cost, easy operation, and non-invasiveness.  On the other hand, a 
CAD system can help an inexperienced clinician in diagnostic evaluation.  The novelty of this 
paper lies in introducing an NN-based classification system for ultrasound images with textural 
features to distinguish between HCC and liver abscess.  We calculated GLCM and GLRLM 
feature matrices, and selected them by SFS, SBS, and F-score feature selection methods before 
using an NN to classify images.  We verified its feasibility by employing an NN to classify 
HCC and liver abscess in this research.  The proposed method can provide diagnostic help while 
distinguishing HCC from liver abscess with a high accuracy of up to 88.375%.  A limitation 
of this study was the lack of a large amount of data for training and validation.  As future 
research, an extended scheme for use with big data, such as that based on deep learning, can be 
considered.

Table 3
Comparison of overall results. 

GLCM + NN GLRLM + NN All features + NN
No feature selection (%) 77.250 73.37 84.25
SFS (%) 72.250 63.00 71.25
SBS (%) 77.880 83.38 85.00
F-score (threshold) (%) 74.125 74.25 84.25
F-score (search all) (%) 80.750 81.51 88.375

Fig. 5.	 (Color online) Results of NN-based classification using GLCM and GLRLM features.
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