S & M 0204

Direct Monitoring of Glutamate Released from Cerebellar Neurons Using Platinized Carbon Disk Microelectrode Modified with Glutamate-Oxidase-Bound Membrane

Eiichi Tamiya*, Youko Sugiura¹, Yuko Amou¹, Isao Karube¹, Ayako Ajima², Raymond T. Kado² and Masao Ito²

The School of Materials Science,
Japan Advanced Institute of Science and Technology,
15 Asahidai, Tatsunokuchi-cho, Ishikawa 923-12, Japan

¹Research Center for Advanced Science and Technology, University of Tokyo,
4-6-1 Komaba, Meguro-ku, Tokyo 153, Japan

²The Institute of Physical and Chemical Research,
2-1 Hirosawa, Wako-shi, Saitama 351-04, Japan

(Received September 28, 1994; accepted March 4, 1995)

Key words: biosensor, neurotransmitters, cerebellar neurons, microelectrode, glutamate

A glutamate microsensor was fabricated by immobilizing glutamate oxidase on a platinized carbon disk (PCD) microelectrode by entrapment with poly(vinyl alcohol)-quaternized stilbazole (PVA-SbQ). These enzyme-bound PCD electrodes, approximately 20 μ m in diameter, detect hydrogen peroxide produced by the oxidase enzyme reaction of glutamic acid. The lower detection limit for this electrode using a pulsed potential was 2 μ M of glutamate (0.2 μ M of hydrogen peroxide), and a linear calibration range from 2 μ M to 1.2 mM of glutamate concentration (0.2 μ M to 2 mM of hydrogen peroxide) was obtained. We demonstrate the application of the PCD electrode microsensor to monitor glutamate released *in vitro* within molecular layers of rat cerebellar cortex tissue. In this experiment, depolarization-induced release of glutamate by calcium ions was observed. The electrode sensor equilibrium response time was 10 seconds for the measurement of glutamate released from cerebellar cortex neurons.

^{*}To whom all correspondence should be addressed.