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	 The frequency spectra of vibration signals can be used to monitor the mechanical conditions 
of a turbine generator.  Frequency-based features are extracted by fast Fourier transformation 
(FFT).  The changes in frequency spectral data and amplitude are used to separate the normal 
condition from the fault conditions.  These features indicate that the characteristic frequencies 
are 1 × f, 2 × f, 3 × f, and two other frequency bands, < 0.4 × f and > 3 × f, where the frequency 
f is the rotor frequency.  The power spectral data shows the mechanical vibration fault at 
particular characteristic frequencies.  Then, radial-based color relation analysis (CRA) is 
applied to identify mechanical faults, including normal condition, oil-membrane oscillation, 
imbalance, and no orderliness.  Using practical records, the experimental results will show that 
the proposed method has a higher accuracy in mechanical vibration fault detection.

1.	 Introduction

	 A turbine generator is a major component of thermal plants, hydroelectric plants, or wind 
farms, consisting of several parts: turbine, generator, shaft (low speed or high speed), and 
exciter.  A steam turbine can also be divided into high-pressure (HP), low-pressure (LP), 
and intermediate-pressure (IP) parts, which are girdled by bearings and provide most of the 
diagnostic information, as seen in Fig. 1(a).  A wind turbine generator converts electrical power 
using rotor blades and wind speed, including vertical and horizontal axis types, as seen in Fig. 
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1(b).  Owing to data transmission problems (outdoor environment), accelerometers, and strain 
gages are used to monitor the gear box for mechanical condition detection.  Digital image and 
stereo-photogrammetry are also used to measure the dynamic conditions.(1,2)  For a steam 
turbine with a large-scaled capacity, the mechanical dysfunctions may damage the generator 
and cause outages and community profit loss.  Therefore, it is necessary to detect faults early 
and take immediate action to avoid profit loss.
	 The turbine generator faults can be classified into three types, namely electrical fault, 
mechanical vibration fault, and cooling system fault.  The first two are the common incipient 
faults in the turbine generator.  Electrical faults are rotor excitation short circuit, stator winding 
ground fault, and stator winding short circuit involving the three-phase fault or line-to-line fault.(3)  
Rotor excitation short circuit may cause an unbalanced magnetic pull that acts on the rotor and 
stator to cause vibrations.  When a short circuit occurs on the stator winding, a percentage-
differential relay quickly trips the main circuit breaker.  Mechanical faults could be caused by 
stresses involved in the conversion of mechanical energy to electrical energy.  Machine bearings 
may be damaged by inadequate lubrication, impure lubrication, or incorrect loading.(4)  On-line 
monitoring devices, such as the shaft position meter, shaft vibration meter, accelerometer, and 
displacement meter, can be used to detect the operation conditions.  Two proximity sensors are 
mounted parallel to the axis of rotation to monitor the axial displacements.  Two accelerometers 
per bearing are mounted on two perpendicular axes, and measure absolute vibration signals 
involving the frequency ranges of 10–10000 Hz.  Hence, the power frequency spectra of the 
vibration signals are important information to detect the faults.(5,6)  Frequency techniques, 
such as wavelet analysis and fast Fourier transform (FFT),(7) are used to extract the frequency 
features, which are changes in frequency and amplitude and are dependent on the fault types 
between 10 and 1000 Hz.  Then, artificial intelligent techniques (machine learning models) 
can provide promising results to identify the vibration features in a turbine generator, such as 
artificial neural networks, fuzzy neural networks, and wavelet neural networks.(8–11)

	 From practical records, big data analysis and collection can extract the key frequency 
features to separate the normal condition from any fault.  The characteristic features are 
extracted using the FFT method, including the frequencies 1 × f, 2 × f, 3 × f, ..., and 9 × f, where 
the frequency f is 60 Hz.  To develop an assistant tool, the frequency spectral data analysis and 
radial-based color relation analysis (CRA)(12–15) are carried out with a machine learning model 
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Fig. 1.	 (Color online) The diagram of turbine generators.  (a) Steam turbine generator and (b) wind turbine 
generator.
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to monitor the mechanical vibration faults.  Among multidimensional big data, the radial-based 
function is a kernel model with Gaussian functions to measure dissimilarity and similarity 
degrees, which are parameterized into the specific membership grades for pattern recognition.  
Then, a CRA-based decision making algorithm is applied to detect turbine generator faults.  It 
is employed to map membership grades into hue angle and saturation value in hue–saturation–
value (HSV) color space, with descriptive perceptual color relationships for identifying normal 
condition, oil-membrane oscillation, imbalance, and no orderliness.  Experimental results 
will show that the proposed method demonstrates a good computational efficiency, easy 
implementation, and a high accuracy for practical uses.

2.	 Materials and Methods

2.1	 Frequency feature extraction

	 A vibration signal or waveform is an important indicator for monitoring defects.  Vibration 
signals are collected from a data acquisition system.  The time-domain signals from 
accelerometers are extracted and converted into frequency-domain features by the FFT method.  
FFT is an approach with a two-sided spectrum in a complex form (real and imaginary parts), 
which can be scaled and converted to the polar form to obtain the amplitude and phase, as 

	 f (e jΩ) =
∞∑

n=−∞
x[n]e− jΩn,	 (1)

where x[n] is a discrete-time domain vibration signal (sample data); n is the sampling points; 
y(ejΩ) is the periodic and extends from the frequency 0 to the sampling frequency fs.  The 
amplitude of the FFT is 

	 f = [ f1, f2, ..., fn, ..., fN] =
abs( f )

max[abs( f )]
,	 (2)

where the element fn, n = 1, 2, 3, …, N, is the amplitude of the frequency spectrum.  With 
the frequency-domain features, diagnostic analysis is used to detect faults in characteristic 
frequencies associated with various fault types.  For 80 practical records, the frequency 
spectrum can be estimated (characteristic frequencies, 80 × 9 = 720), including characteristic 
frequencies and amplitudes.  The frequency features are n × f, rotor frequency f =  60 Hz, order 
n = 1, 2, 3, …, 9 (N = 9 in this study), as seen in Fig. 2.  According to the frequency patterns, 
training data can be generated to construct the machine learning model with the frequency 
spectral data of vibration signals.  Different fault types appear with their symptomatic patterns 
and are divided into 

·	Class 1: “Oil-membrane oscillation” with the total number of 20;
·	Class 2: “Imbalance” with the total number of 20;
·	Class 3: “No orderliness” with the total number of 20;
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·	 Class 4: “Normal” with the total number of 20.
	 As a digital signal processing algorithm, diagnostic algorithms can be easily realized in a 
PC-based device or an embedded system.  In this paper, the radial-based CRA algorithm is 
developed with frequency spectral data for the feasibility study of big data analysis.

2.2	 Radial-based CRA

	 For high-dimensional recognition applications, the radial-based function network establishes 
a nonlinearity estimator with more input variables, which can model a high-dimensional pattern 
mechanism with various available combinations of training patterns, as seen in Fig. 3.  Based on 
similarity and dissimilarity, relational measurement is a manner for pattern recognition between 
the reference pattern fr and the other comparative patterns fc.  For pattern recognition between 
the reference pattern, fr(0) = [ f1(0), f2(0), …, fn(0), …, fN(0)], and other comparative patterns, 
fc(k) = [ f1(k), f2(k), …, fn(k), …, fN(k)].  The radial-based function (Gaussian function) G is used 
to measure similarity degree and is parameterized as(12)

	 G(k) = exp


−1
2σ2 ×



√√√ N∑
i=1

(∆ fi(k))2



2
,	 (3)
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Fig. 2.	 (Color online) Frequency features. (a) Oil-membrane oscillation, (b) imbalance, (c) no orderliness, and (d) 
normal condition.
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	 ED(k) =

√√√ N∑
i=1

(∆ fi(k))2, ∆ fi(k) = | fri(0) − fci(k)|,	 (4)

where K is the number of training data, k = 1, 2, 3, …, K; ED(k) is the Euclidean distance (ED); 
σ is the standard deviation and σ = 0.1 is chosen in this study.  The Gaussian functions G are 
used to classify these patterns.  The similarity degree is parameterized with Eqs. (3) and (4), 
and is employed to screen the similarity degree among the training patterns, varying within 
between value 0 and 1.  If input feature pattern is similar to any comparative pattern, the ED(k) 
will be small values, as ED(k)→0 and G(k)→1, otherwise, ED(k) ≫ 0 and G(k)→0.  Then, the 
average similarity degree for each desired class is

	 y j(k) =
K∑

k=1

wk j ×G(k)
/ K∑

k=1

G(k),	 (5)

where the values of wkj ∈ [0, 1] are weighted connections for the four classes, j = 1, 2, 3, 4.  
Then, the minimum and maximum average grades are

	 ρmin ρmin = min[y1, y2, y3, y4],	 (6)

	 ρmax ρmax = max[y1, y2, y3, y4],	 (7)

	 ∆ρ = ρmax − ρmin,	 (8)

where ρm,min ≠ ρm,max and ρmax ≠ 0.
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Fig. 3.	 (Color online) Radial based color relation analysis and HSV color space for mechanical faults.
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	 According to the HSV color model,(13–15) the CRA model is defined as a transformation 
manner from the similarity degrees to the HSV color space.  As seen in Fig. 3, the hue angle 
h ∈ [0, 360°] can be defined as

	 h =



0 or 360, ρmax = y1

180, ρmax = y4

180 − 60 × ( y2−y4
∆ρ ), ρmax = y2

180 + 60 × ( y3−y4
∆ρ ) + 240, ρmax = y3

	 (9)

where ρmin = ρmax and h = 0.  The saturation s and the value v are found, which are defined as

	 s = 1 − ρmin

v
, v = ρmax, ρmax � 0 .	 (10)

	 The index h is used to identify the four classes, as four open intervals as follows: (1) h = 0° 
or 360° is red series color for oil-membrane oscillation; (2) hm = 180° is light blue series color 
for normal condition; (3) h = 120° is green series color for imbalance; and (4) h = 240° is blue 
series color for no orderliness.  The index s is also employed to provide the confidence level.  If 
its value is > 0.5 and approaches 1.0, we have a high confidence to confirm the possible class.  
The CRA is a visual method with color codes to represent the fault types and has a flexibility 
inference mechanism.
	 The proposed fault detection procedure consists of four stages: (a) vibration signal 
measurement, (b) feature extraction by FFT method, (c) feature pattern combination, and 
(d) fault detection using radial based CRA, as seen in Fig. 4.  Vibration signals from the 
accelerometer metering system are collected and transferred to the computer.  Frequency-
domain features are extracted by the FFT method.  The fault patterns can be revealed using 
frequency spectral data in big data analysis, as seen at 120, 180, 300, 360, and 420 Hz in Fig. 5.  
Abnormal condition can be detected at the pattern recognition stage using radial-based CRA.

3.	 Results

	 The proposed diagnostic procedure was designed and tested using LabVIEW (National 
InstrumentsTM Corporation, Austin, Texas, USA) graphical programming software and 
MATLAB software/math-script workspace (MathWorks, Natick, Massachusetts, USA).  An 
embedded system (National InstrumentsTM myRIO-1900, Austin, Texas, USA) was also used to 
implement the prototype model including: (1) metering the electrical signals (vibration signals), (2) 
extracting the frequency feature using FFT algorithm, and (3) designing the radial-based CRA 
in a programmable processor; as seen in Fig. 6.  The measurement data was divided into two 
groups; 80 frequency-based patterns were used as the training data and the other 80 patterns 
were used as testing data.
	 Using practical records, the proposed procedure provided highly confident results for 
decision making in fault detection.  The MATLAB colormap function represented the 
experimental results to the HSV color space between 0° and 360°.  For the 80 testing data, the 
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experimental results indicated that the hue angles appeared at 0° or 360°, 180°, 120°, and 240° to 
identify the fault types, as shown in Fig. 7.  There were 20 records of oil-membrane oscillation 
(No.1#–No.20#), 20 records of imbalance (No.21#–No.40#), 20 records of no orderliness (No.41#–
No.60#), and 20 records of normal condition (No.61#–No.80#).  For example, an oil-membrane 

Fig. 4.	 (Color online) The flowchart of mechanical 
vibration fault detection.

Fig. 5.	 (Color online) Frequency domain features in 
key characteristic frequencies (120, 180, 300, 360, and 
420 Hz).

Fig. 6.	 (Color online) Prototype design in an embedded system.
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oscillation event (No. 11#) was investigated.  The diagnostic procedures are as follows:
Step (1)	 given the frequency spectral pattern of vibration signal, f = [0.0058, 0.0016, 0.0011, 0.0110, 

0.8479, 30.0501, 0.0218, 0.0222, 0.0030];
Step (2)	 compute the similarity degrees using Eqs. (3) and (4) as shown in Fig. 7(a);
Step (3)	 compute the average similarity degrees using Eq. (5), y = [1.0000, 0.0000, 0.0000, 

0.0000];
Step (4)	 convert the average similarity degrees to the hue angle and saturation, h = 0°/360° 

and s = 1.0000, respectively.  The overall experimental results obtained using color 
perceptual representations are shown in Fig. 7(b).

	 The MATLAB images and colormap functions scaled the experimental results to the HSV 
color space and displayed the visual image.  For record No. 11#, the hue angle h = 0°/360° and 
saturation s = 1.0000 indicated the possible fault, and confirmed that the fault is an “oil-membrane 
oscillation” event.  The radial-based CRA model promised the results with 100% accuracy.  To 
demonstrate the effectiveness of the proposed method, twenty recorded data from steam-turbine 
generator sets are tested as shown in Table 1.(7)  There are 6 records of oil-membrane oscillation 
(Nos. 1–6), 6 records of imbalance (Nos. 7–12), 6 records of no orderliness (Nos. 13–18), and 6 
records of normal condition (Nos. 19–24).  The input data include the five amplitude values of 
the vibration spectrum.  Table 1 shows the frequency spectrum for the test records.  The radial-
based CRA method promises the results with 100% accuracy.
	 To test the robustness of the proposed method, testing data were produced with −50 to +50% 
noises.  Figure 8 shows the detection accuracies versus adding noises for the same testing data 
involving oil-membrane oscillation, imbalance, no orderliness, and normal condition.  The 
proposed method did not promise the results with 100% accuracy owing to added serious 
noises.  The results showed that the proposed method had high detection accuracies under noisy 
background with −15 to +20% noises (Accuracy > 80%).  In addition, artificial neural networks 
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had some limitations in dealing with high-dimensional training data including learning 
processes, iteration computations for determining weights and learning rates, and network 
architecture determinations, which is difficult to retrain with new training data.  In contrast to 

Fig. 8.	 (Color online) Detection accuracy versus adding −50 to +50% noises.

Table 1
Testing data of steam-turbine generator sets.
Generator
number f1 f2 f3 f4 f5 f6 f7 f8 f9

h 
(Hue) s

1 0.0027 0.0014 0.0082 0.0155 0.9235 0.0687 0.0404 0.0459 0.0045     0 1
2 0.0458 0.0028 0.0027 0.0172 0.6685 0.0888 0.0402 0.0367 0.0063     0 1
3 0.0043 0.00157 0.0015 0.0110 0.6920 0.0510 0.0181 0.0169 0.0029     0 1
4 0.0040 0.0016 0.0014 0.0118 0.9279 0.0458 0.0200 0.0198 0.0038     0 1
5 0.0057 0.0014 0.0014 0.0090 0.8228 0.0550 0.0207 0.0199 0.0028     0 1
6 0.0053 0.0015 0.0014 0.0101 0.8061 0.0511 0.0169 0.0226 0.0026     0 1
7 0.1193 0.0187 0.0079 0.1322 0.4925 0.0192 0.0440 0.0262 0.0737 120 1
8 0.1310 0.0137 0.0071 0.1322 0.4743 0.0202 0.0463 0.0204 0.0716 120 1
9 0.0301 0.0124 0.0204 0.1970 0.5295 0.0189 0.0671 0.0208 0.0482 120 1

10 0.0256 0.0108 0.0188 0.1416 0.6207 0.0219 0.0547 0.0286 0.0583 120 1
11 0.1197 0.0064 0.0049 0.1577 0.4647 0.0197 0.0491 0.0124 0.0435 120 1
12 0.1068 0.0048 0.0054 0.1998 0.5084 0.0218 0.0541 0.0109 0.0428 120 1
13 0.0015 0.0017 0.0032 0.0064 0.5587 0.1747 0.0923 0.1351 0.0255 240 1
14 0.0021 0.0016 0.0032 0.0053 0.4778 0.1432 0.1223 0.1349 0.0182 240 1
15 0.0016 0.0018 0.0029 0.0058 0.6919 0.1542 0.1280 0.1112 0.0200 240 1
16 0.0139 0.0025 0.0027 0.0059 0.6169 0.1612 0.0771 0.0917 0.0329 240 1
17 0.0140 0.0021 0.0034 0.0062 0.5955 0.1598 0.0749 0.0871 0.0382 240 1
18 0.0119 0.0023 0.0029 0.0076 0.7486 0.1638 0.0682 0.0766 0.0303 240 1
19 0.0158 0.2163 0.4644 0.0699 0.0971 0.0323 0.0332 0.0282 0.0068 180 1
20 0.0113 0.2680 0.5287 0.0763 0.1119 0.0428 0.0307 0.0323 0.0067 180 1
21 0.0055 0.2851 0.4319 0.0650 0.0995 0.0378 0.0266 0.0255 0.0047 180 1
22 0.0043 0.2859 0.5788 0.0581 0.0850 0.0341 0.0281 0.0252 0.0060 180 1
23 0.0054 0.2488 0.4302 0.0609 0.0911 0.0423 0.0238 0.0221 0.0049 180 1
24 0.0045 0.2241 0.4807 0.0852 0.0930 0.0392 0.0265 0.0269 0.0065 180 1

Note: f is the frequency of the generator rotor.
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artificial neural networks, the proposed method had a straightforward mathematical operation 
to process numerical data without any inference rules, and requires no iterative and recursive 
computations for adjusting many parameters.  With the same experimental data, the proposed 
method showed better performance than traditional methods, and confirmed the higher 
confidence of detection results in the tests with and without noises.

4.	 Conclusions

	 The integrating FFT and radial-based CRA has been presented for mechanical vibration 
fault detection in turbine generators.  The proposed method could effectively detect mechanical 
condition with the frequency spectra of vibration signals.  The frequency features were extracted 
by the FFT method.  In the feasibility study of big spectral data analysis, these key frequency 
features were at 120, 180, 300, 360, and 420 Hz.  Characteristic frequencies with orders 1 to 
9 (60–540Hz) were combined with various feature patterns to separate the normal condition 
from any fault type.  The proposed radial-based CRA method could avoid the determination of 
the network architectures, parameter assignments, and iteration computations.  Mathematical 
operation required less computation time for processing numerical data without adjusting any 
parameters.  For both testing data without noise or with −15 to +20% noisy backgrounds, the 
experimental results demonstrated the efficiency of the proposed method.  Compared with other 
artificial neural networks, the proposed method showed good performance for fault diagnosis in 
turbine generators.  To develop an assistance tool, the proposed method is easy to implement in 
a portable device and a hardware device, can be further constructed in an on-line model, and be 
integrated into the monitoring instrument.
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