S&M Young Researcher Paper Award 2020
Recipients: Ding Jiao, Zao Ni, Jiachou Wang, and Xinxin Li [Winner's comments]
Paper: High Fill Factor Array of Piezoelectric Micromachined
Ultrasonic Transducers with Large Quality Factor

S&M Young Researcher Paper Award 2021
Award Criteria
Notice of retraction
Vol. 32, No. 8(2), S&M2292

Print: ISSN 0914-4935
Online: ISSN 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.
Published in advance: May 28, 2021

Application of Maximum Likelihood and Spectral Angle Mapping Classification Techniques to Evaluate Forest Fire Severity from UAV Multi-spectral Images in South Korea [PDF]

Heesung Woo, Mauricio Acuna, Buddhika Madurapperuma, Geonhwi Jung, Choongshik Woo, and Joowon Park

(Received March 17, 2021; Accepted May 17, 2021)

Keywords: forest fire, UAV, remote sensing, accuracy assessment, machine learning

High-resolution unmanned aerial vehicle (UAV) multi-spectral sensor images can provide valuable information for mapping forest areas that have recently been burned. In this study, we investigate the use of multi-spectral images captured with a UAV to evaluate burn severity in areas affected by forest fires in Gumi-si, South Korea. Fire classification was performed using two supervised learning algorithms, maximum likelihood (ML) and spectral angle mapper (SAM). Three spectral indices, namely, normalized difference vegetation index (NDVI), RedEdge NDVI (RE-NDVI), and the visible-band difference vegetation index (VDVI), were used to create burn severity thresholds in ML and SAM classifiers. The classification results indicated that ML has higher overall accuracy (80–89%, Kappa coefficient = 0.8) than SAM (44–52%, Kappa coefficients ~0.27) in identifying fire severity classes. The ML classifier showed higher accuracy for both unburned and crown fire classes, whereas the SAM classifier exhibited moderate accuracy for all classes. Most of the misclassification was identified between the unburned area and the low heat-damaged area. This research revealed that distinguishing between the unburned area and low heat-damaged area is the most challenging task in fire severity classification. Also, further investigation is required to improve the accuracy of fire severity classification from multi-spectral images.

Corresponding author: Joowon Park

Forthcoming Regular Issues

Forthcoming Special Issues

7th Special Issue on the Workshop of Next-generation Front-edge Optical Science Research
Guest editor, Yutaka Fujimoto (Tohoku University) and Takayuki Yanagida (Nara Institute of Science and Technology)

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices Part 4(2)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Yango University)

Special Issue on Artificial Intelligence and Advanced Technologies for Power and Renewable Energy Systems from IS3C2020
Guest editor, Shiue Der Lu , Meng Hui Wang, Kuei Hsiang Chao, and Her Terng Yau (National Chin-Yi University of Technology) (deadline extended to 28 Feb. 2021)
Conference website
Call for paper

Special Issue on the International Multi-Conference on Engineering and Technology Innovation 2020 (IMETI2020)
Guest editor, Wen-Hsiang Hsieh (National Formosa University)
Conference website

Special Issue on Human-in-the-loop Sensing in Cognitive Robotic Systems
Guest editor, Weiwei Wan (Osaka University), Yiming Jiang (Hunan University), and Daolin Ma (MIT)
Call for paper

Special Issue on Sensing and Data Analysis Technologies for Living Environment, Health Care, Production Management and Engineering/Science Education Applications: Part 2
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Rey-Chue Hwang (I-Shou University), Ja-Hao Chen (Feng Chia University), Ba-Son Nguyen (Research Center for Applied Sciences)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.