Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語

Template
English

Publisher
 MYU K.K.
 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.


MYU Research

(proofreading and recording)


MYU K.K.
(translation service)


The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.

Intelligent Monitoring System Based on Optical Fiber Acoustic Emission Sensor and Its Application in Partial Discharge Diagnosis of Gas-insulated Switchgear

Shiqi Hou, Yongrui Qin, Jiaxin Gao, Fuyong Lyu, and Xuefeng Li

(Received July 6, 2020; Accepted January 11, 2021)

Keywords: partial discharge, optical fiber AE sensor, polarization modulation, BP-ANN

Gas-insulated switchgear (GIS) is widely used in high-voltage power transmission systems. There has also been increasing demand for the real-time and online detection of faults in GIS equipment. In this study, a new type of optical fiber acoustic emission (AE) sensor based on the photoelastic effect and the polarization modulation method is proposed and fabricated. Partial discharge (PD)-induced AE signals of different defects were collected by this sensor and used for back-propagation artificial neural network (BP-ANN) training and recognition after data preprocessing and feature extraction. The results of the research show that a BP-ANN with self-adaptation and self-learning combined with the proposed sensor has good performance in the recognition and prediction of PD faults in GIS equipment, and the average accuracy of the test set reached 93.7%. The detection technology for weak AE signals and the fault identification method reported in this study can provide a reference for online monitoring of GIS and other equipment, which will have appreciable economic value and social significance.

Corresponding author: Xuefeng Li




Forthcoming Regular Issues


Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-1
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (2)-2
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Special Issue on New Trends in Robots and Their Applications
Guest editor, Ikuo Yamamoto (Nagasaki University)


Special Issue on Artificial Intelligence in Sensing Technologies and Systems
Guest editor, Prof. Lin Lin (Dalian University of Technology)
Call for paper


Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (3)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)


Copyright(C) MYU K.K. All Rights Reserved.