Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Copyright(C) MYU K.K.
Published in advance: May 13, 2020

Flexible Hybrid Electronics Device Sealed by Dimethylpolysiloxane with Floating Nested Structure [PDF]

Toshihiro Takeshita, Takahiro Yamashita, Yusuke Takei, and Takeshi Kobayashi

(Received March 18, 2020; Accepted April 24, 2020)

Keywords: FHE, MEMS, ultrathin chip, stretchable electronics, flexible electronics

This paper describes a new sealing structure, a “floating nested structure”, for flexible hybrid electronic (FHE) device applications using an ultrathin chip (UTC). In the floating nested structure, the part on which the UTC is mounted is physically connected to the sealing material only with a meander structure. By using the floating nested structure, the tensile strain transmitted to the UTC mounted on a flexible substrate can be reduced markedly. We fabricated a UTC with a thickness of 5 µm using deep reactive ion etching (deep-RIE) technology. The fabricated UTC had flexibility with a radius of curvature of 0.5 mm. Also, we conducted an experiment to demonstrate the effect of the floating nested structure. When the elongation of the test sample used in the experiment was 20%, the strain on the flexible substrate without the floating nested structure was 710 µε. In contrast, the strain was 220 µε when using the flexible substrate with the floating nested structure. This means that the floating nested structure reduced the propagation of strain by 69.0%. From the above results, it is expected that the floating nested structure can be useful in the development of FHE devices with both elasticity and flexibility.

Corresponding author: Toshihiro Takeshita

Forthcoming Regular Issues

Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (1)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)
Call for paper

Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper

Special Issue on Intelligent Sensing Control Analysis, Optimization and Automation
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website
Call for paper

Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website

Special Issue on Geomatics Technologies for the Realization of Smart Cities (1) and (2)
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.