Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 10(1) (2020)
Copyright(C) MYU K.K.
pp. 3221-3234
S&M2334 Research Paper of Special Issue
Published: October 9, 2020

Embedded Vein Recognition System with Wavelet Domain [PDF]

Chih-Hsien Hsia and Chin-Feng Lai

(Received March 15, 2020; Accepted June 30, 2020)

Keywords: finger-vein recognition systems, symmetric mask-based discrete wavelet transform, repeated line tracking, support vector machine, embedded system

Advances in computer vision (CV) have led to an increasing market for biometric recognition systems. However, as more users are registered in a system, its expanding dataset will increase the system’s response time and lower its recognition stability. As mentioned above, we propose a new high-performance algorithm suitable for embedded finger-vein recognition systems. First, the semantic segmentation based on DeepLabv3+ filters out the background noise and enhances processing stability. The adaptive symmetric mask-based discrete wavelet transform (A-SMDWT) and adaptive image contrast enhancement were used in the preprocessing of images, and feature extraction was performed through the repeated line tracking (RLT) method. Next, the histogram of oriented gradient (HOG) of the image was computed, after which a support vector machine (SVM) was then used to train a classifier. Finally, a self-established finger-vein image dataset as well as a public dataset was implemented in the Raspberry Pi platform, which is a low-level embedded system. The experimental results indicated that the proposed system offers advantages such as a high accuracy rate, low device cost, and fast response time. Therefore, the three major issues that were encountered in previous embedded finger-vein image verification systems were mitigated in this work.

Corresponding author: Chin-Feng Lai

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Chih-Hsien Hsia and Chin-Feng Lai, Embedded Vein Recognition System with Wavelet Domain, Sens. Mater., Vol. 32, No. 10, 2020, p. 3221-3234.

Forthcoming Regular Issues

Forthcoming Special Issues

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (1)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)
Call for paper

Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper

Special Issue on Intelligent Sensing Control Analysis, Optimization and Automation
Guest editor, Cheng-Chi Wang (National Chin-Yi University of Technology)

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website
Call for paper

Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website

Special Issue on Geomatics Technologies for the Realization of Smart Cities (1) and (2)
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.