Notice of retraction
Vol. 32, No. 8(2), S&M2292

ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 8(2) (2020)
Copyright(C) MYU K.K.
pp. 2745-2753
S&M2297 Research Paper of Special Issue
Published: August 20, 2020

Classification of Hepatocellular Carcinoma and Liver Abscess by Applying Neural Network to Ultrasound Images [PDF]

Sendren Sheng-Dong Xu, Chun-Chao Chang, Chien-Tien Su, Pham Quoc Phu, Tifany Inne Halim, and Shun-Feng Su

(Received January 13, 2020; Accepted May 21, 2020)

Keywords: liver abscess, hepatocellular carcinoma (HCC), neural network (NN), ultrasound images, gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRM)

In diagnostic ultrasound, an ultrasound transducer converts an electrical signal into an ultrasound pulse, which enters the tissue from the body surface. At the surface, an echo appears. The probe senses and receives the echo, and all the echoes are converted back to signals and graphics, which can be analyzed by medical staff. We studied the neural network (NN)-based classification of hepatocellular carcinoma (HCC) and liver abscess using texture features of ultrasound images. From 79 cases of liver diseases (44 liver cancer and 35 liver abscess cases), we extracted 52 features of the gray-level co-occurrence matrix (GLCM) and 44 features of the gray-level run-length matrix (GLRLM), giving a total of 96 features. We used three feature selection models to distinguish these two liver diseases: sequential forward selection (SFS), sequential backward selection (SBS), and F-score. We proved that our developed system can be used to classify liver cancer and liver abscess using an NN with an accuracy of 88.375%, which can provide diagnostic assistance for inexperienced clinicians.

Corresponding author: Chien-Tien Su

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Sendren Sheng-Dong Xu, Chun-Chao Chang, Chien-Tien Su, Pham Quoc Phu, Tifany Inne Halim, and Shun-Feng Su, Classification of Hepatocellular Carcinoma and Liver Abscess by Applying Neural Network to Ultrasound Images, Sens. Mater., Vol. 32, No. 8, 2020, p. 2745-2753.

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on Perceptual Deep Learning in Computer Vision and its Application
Guest editor, Chih-Hsien Hsia (National Ilan University)

Special issue on Novel Materials and Sensing Technologies on Electronic and Mechanical Devices (1)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Hsien-Wei Tseng (Longyan University)
Call for paper

Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper

Special Issue on International Conference on BioSensors, BioElectronics, BioMedical Devices, BioMEMS/NEMS and Applications 2019 (Bio4Apps 2019)
Guest editor, Hirofumi Nogami and Masaya Miyazaki (Kyushu University)
Conference website
Call for paper

Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (4)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website

Special Issue on Geomatics Technologies for the Realization of Smart Cities
Guest editor, He Huang and XiangLei Liu (Beijing University of Civil Engineering and Architecture)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.