ISSN (print) 0914-4935
ISSN (online) 2435-0869
Sensors and Materials
is an international peer-reviewed open access journal to provide a forum for researchers working in multidisciplinary fields of sensing technology.
Sensors and Materials
is covered by Science Citation Index Expanded (Clarivate Analytics), Scopus (Elsevier), and other databases.

Instructions to authors
English    日本語

Instructions for manuscript preparation
English    日本語


 Sensors and Materials
 1-23-3-303 Sendagi,
 Bunkyo-ku, Tokyo 113-0022, Japan
 Tel: 81-3-3827-8549
 Fax: 81-3-3827-8547

MYU Research, a scientific publisher, seeks a native English-speaking proofreader with a scientific background. B.Sc. or higher degree is desirable. In-office position; work hours negotiable. Call 03-3827-8549 for further information.

MYU Research

(proofreading and recording)

(translation service)

The Art of Writing Scientific Papers

(How to write scientific papers)
(Japanese Only)

Sensors and Materials, Volume 32, Number 8(1) (2020)
Copyright(C) MYU K.K.
pp. 2577-2584
S&M2284 Research Paper of Special Issue (Prof. Yang)
Published: August 10, 2020

Ultrathin and Flexible Self-powered Temperature Sensor Based on Sputtered Tellurium Nanoparticles [PDF]

Imran Khan, Zong-Hong Lin, and Yu-Lin Wang

(Received December 7, 2019; Accepted April 1, 2020)

Keywords: temperature detection, self-powered sensor, tellurium nanoparticles, thermoelectric effect, flexibility, ultrathin device

The energy crisis has worsened with the increase in population; to overcome this crisis, self-powered devices are required urgently. Human beings have also become increasingly health conscious and require modern equipment to monitor their body conditions. Body temperature is a measure of the thermoregulation in the body and also indicates other health conditions. For continuous body temperature monitoring, smart sensors are the best choice. In this work, we fabricate an ultrathin (150 nm) and flexible temperature sensor using thermoelectric tellurium nanoparticles (Te-NPs) sputtered on a thin Al substrate that can detect the exact surface temperature relative to its ambient temperature measurement. The sensor can sense both hot and cold surfaces and shows a linear response with increasing or decreasing temperature measurement. Because of its compact size and flexibility, it can conform to any surface for temperature. For a temperature gradient of 75 ℃, the sensor gives an output voltage of 0.4 mV and can even accurately measure body temperature with only a human finger touch. Such a flexible and thin device can be used in the day-to-day monitoring of the human body or any other surface whose temperature should be determined before touching it.

Corresponding author: Zong-Hong Lin, Yu-Lin Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Cite this article
Imran Khan, Zong-Hong Lin, and Yu-Lin Wang, Ultrathin and Flexible Self-powered Temperature Sensor Based on Sputtered Tellurium Nanoparticles, Sens. Mater., Vol. 32, No. 8, 2020, p. 2577-2584.

Forthcoming Regular Issues

Forthcoming Special Issues

Special Issue on Advanced Materials on Electronic and Mechanical Devices and their Application on Sensors (5)
Guest editor, Teen-Hang Meen (National Formosa University), Wenbing Zhao (Cleveland State University), and Cheng-Fu Yang (National University of Kaohsiung)

Special Issue on Advances in Shape Memory Materials
Guest editor, Ryosuke Matsui (Aichi Institute of Technology) and Hiroyuki Miki (Tohoku University)

Special Issue on Sensing Technologies and Their Applications (1)
Guest editor, Rey-Chue Hwang (I-Shou University)
Call for paper

Special Issue on Perceptual Deep Learning in Computer Vision and its Application
Guest editor, Chih-Hsien Hsia (National Ilan University)

Special Issue on Materials, Devices, Circuits, and Analytical Methods for Various Sensors (3)
Guest editor, Chien-Jung Huang (National University of Kaohsiung), Cheng-Hsing Hsu (National United University), Ja-Hao Chen (Feng Chia University), and Wei-Ling Hsu (Huaiyin Normal University)
Conference website

Special Issue on New Trends in Smart Sensor Systems
Guest editor, Takahiro Hayashi (Kansai University)
Call for paper

Copyright(C) MYU K.K. All Rights Reserved.