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	 Type-II InAs/GaSb superlattices (SLs) are attractive material systems for mid-infrared 
photodiodes (PDs) with higher detectivities than the conventional HgCdTe.  GaSb 
substrates are generally used for the epitaxial growth of these type-II SLs.  However, in 
the case of back-illuminated PDs, the GaSb substrate should be nearly removed because 
of its strong absorption of mid-infrared light.  In this study, infrared PDs with a cut-off 
wavelength of 7 μm were fabricated for the first time by using the 100 period of InAs/
GaSb SLs grown on an InP substrate, which has much less absorption of mid-infrared 
light.  The dark current density at the reverse bias of −0.1 V and at a temperature of 112 
K was 33.0 mA/cm2.  External quantum efficiency over 10% at the wavelength of 5 μm 
was obtained. 

1.	 Introduction

	 Mid-infrared photodiodes (PDs) with a cut-off wavelength over 3 μm are used for gas 
sensing, thermal detection and so forth.  PDs made of HgCdTe have been widely used for 
highly sensitive and high-speed operations.  Recently, type-II InAs/GaSb superlattices 
(SLs) have been regarded as promising alternative material systems because of the easy 
controllability of their bandgap energy and the prediction of lower dark currents owing 
to the suppression of Auger recombination.(1,2)  Focal plane arrays (FPAs) using InAs/
GaSb SL absorption layers have been reported.(3–6)  GaSb substrates are generally used 
for epitaxial growth.  However, in the case of back-illuminated PDs such as FPAs, the 
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GaSb substrate should be nearly removed because of its large absorption coefficient 
in the infrared region.(7)  Furthermore, the large difference in the thermal expansion 
coefficient between GaSb and silicon makes the reliability of the FPA poor.  The FPA is 
fabricated by bonding a PD chip to a silicon read-out integrated circuit via bump metals.  
When the FPA is cooled to an operational temperature lower than 100 K, significant 
stress is applied to the bonding part due to the difference in the thermal expansion 
coefficient.  The InAs/GaSb SLs grown on GaAs substrates with high transparency in 
the infrared region are proposed and demonstrated.(7)  However, the difference in the 
thermal expansion coefficient between GaAs and silicon is still large.  The GaAs also has 
the problem that the large lattice mismatch between GaAs and GaSb (7.8%) makes the 
epitaxial growth difficult.(8,9) 
	 InP substrates are more favorable because of not only a high transparency in the mid-
infrared region but also a smaller lattice mismatch to the GaSb as listed in Table 1(a).  
Moreover, the thermal expansion coefficient of InP is closer to that of Si than to those of 
GaAs and GaSb [Table 1(b)].  Miura et al. have reported that InAs/GaSb SLs with good 
crystalline and optical qualities were successfully grown on InP substrates.(10)  By using 
a thicker GaSb buffer layer on the InP substrate, the full width at half maximum of X-ray 
satellite peaks and the photoluminescence intensities were improved.  In this study, 
mid-infrared PDs with InAs/GaSb SL absorption layers grown on InP substrates were 
successfully fabricated for the first time. 

2.	 Materials and Methods

	 First of all, the absorption coefficient of InP substrates was measured.  Absorption 
coefficient spectra of several substrates are shown in Fig. 1.  An Fe-doped InP substrate 
was proved to have a lower absorption coefficient in the wavelength range of 3–12 µm 
than an undoped GaSb substrate and a Te-doped GaSb substrate, probably due to less 
free carrier absorption.  In this study, we used Fe-doped InP substrates. 
	 Epitaxial growth was performed by the solid-source MBE method.  In and Ga metals 
were used as group III beam sources and supplied by conventional effusion cells.  Group 

Table 1
Parameters of GaSb, GaAs and InP. 
(a) Lattice constant

Lattice constant (Å) Lattice mismatch with GaSb Reference
GaSb 6.096 – 11
GaAs 5.653 7.8% 11
InP 5.870 3.9% 11
(b) Thermal expansion coefficient

Thermal expansion coefficient (10–6 K–1) Reference
Si 3.34 12
GaSb 7.74 11
GaAs 6.86 11
InP 4.75 11
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V sources of As and Sb were supplied by needle-valve cracking cells.  The cracking 
temperatures were kept at 600 and 800 °C for As and Sb, respectively.  The substrate 
temperature was measured using a pyrometer. 
	 Prior to growth, the Fe-doped (100) InP substrate surface was cleaned at 540 °C 
under As vapor pressure.  An undoped In0.53Ga0.47As layer of 0.15 μm thickness and 
a Be-doped GaSb buffer layer of 4.5 µm thickness were grown on the substrate.  The 
In0.53Ga0.47As layer is effective in making the surface smooth, and the thick GaSb buffer 
layer is effective in reducing the propagation of threading dislocations into the SL.(10)  
The doping density in the GaSb buffer layer is 2.0 × 1018 cm−3.  InAs/GaSb SL, which 
consists of 100 pairs of 3.7-nm-thick InAs and 2.1-nm-thick GaSb, was grown on the 
GaSb buffer layer.  To obtain a p-i-n structure, the GaSb layers in the bottom 30 pairs of 
SL were doped by Be.  The doping density in the GaSb layers is 1.0 × 1017 cm−3, and the 
InAs layers in the upper 30 pairs of SL were doped by Si.  The doping density in the InAs 
layers is 2.0 × 1018 cm−3.  The middle 40 pairs were not intentionally doped.  Finally, a 
Si-doped InAs cap layer of 20 nm thickness was grown on the SLs.  The doping density 
in the InAs cap layer is 2.0 × 1018 cm−3.  As references, two types of InAs/GaSb SL were 
grown on Te-doped (100) GaSb substrates, where Be-doped GaSb buffer layers of 0.5 
μm thickness and Si-doped InAs cap layers of 20 nm thickness were also grown.  One SL 
consists of 100 pairs of 3.4-nm-thick InAs and 2.1-nm-thick GaSb and the other consists 
of 100 pairs of 3.9-nm-thick InAs and 2.1-nm-thick GaSb.  The doping densities in the 
SLs, the buffer layers and the cap layers were the same as those on the InP substrate. 
	 The crystalline quality of the epitaxial wafers was characterized by X-ray diffraction 
with Cu Kα1 (λ = 1.54056 Å) and photoluminescence (PL) using a YAG laser (1064 nm) 
for the excitation source and an HgCdTe detector for the detection.
	 Mid-infrared PDs on the InP substrate were fabricated.  The structure is illustrated 
in Fig. 2.  The PDs were isolated by mesa etching using a solution including phosphoric 
acid (H3PO4), citric acid (C6H8O7), hydrogen peroxide (H2O2) and water (H2O).  The 
mesa diameters were changed from 30 to 920 μm.  The sidewalls were passivated 
with a SiO2 layer deposited by plasma-enhanced chemical vapor deposition.  Ti/Pt/Au 
electrodes were evaporated on both Si-doped InAs cap layers and Be-doped GaSb buffer 
layers, which were revealed by mesa etching.  PDs on the GaSb substrates were also 
fabricated by the same procedure. 

Fig. 1.  Absorption coefficient spectra of InP and GaSb substrates.
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	 Current-voltage characteristics of PDs were measured using a low-temperature wafer 
probing system with a semiconductor device analyzer.  The quantum efficiencies were 
measured at 30 K and −20 mV bias with a monochromator using a diffraction grating.  
To estimate the absolute power of the measurement system, a thermopile detector (Dexter 
Model 2M) was used as a reference detector.

3.	 Results and Discussion

	 X-ray rocking curves (XRCs) of the SLs on the InP and GaSb substrates (InAs 
thickness 3.9 nm) are shown in Fig. 3.  Satellite peaks are clearly seen in the XRC of the 
SL on the InP substrate, indicating that a periodic structure was realized, although they 
are wider than those of the SL on the GaSb substrate.  In both XRCs, the peak positions 
of the SLs seem to coincide with those of the GaSb buffer layers, probably owing to the 
incorporation of Sb in the InAs layers.
	 PL spectra of the SLs on the InP and GaSb substrates were measured at 10 K (Fig. 4).  
The PL peak wavelengths were changed by the different thicknesses of InAs, and that 
of the SL on the InP substrate was 7 µm.  The SL with 3.9-nm-thick InAs layers on the 
GaSb substrate exhibited a weaker PL peak than the SL with 3.4-nm-thick InAs layers on 
the GaSb substrate, which suggests that thicker InAs layers induce less overlap between 
wavefunctions of electrons and holes.  On the other hand, the PL peak intensity of the SL 
on the InP substrate almost equals that of the SL with 3.4-nm-thick InAs layers on the 
GaSb substrate despite the thicker InAs layers.  The strong PL intensity of the SL on the 
InP substrate seems to be contradictory to the fact that threading dislocations are found 
to be generated at the initial stage of the GaSb buffer layer growth and propagate to the 
SL in a previous study.(10)  The reason is not clear yet.  However, the authors suppose 
that the strong excitation density (7076 W/cm2) weakens the influence of the threading 
dislocations.  Moreover, the high resistivity of the Fe-doped InP substrate might prevent 
the photogenerated carriers from diffusing into the substrate. 
	 Current-voltage characteristics of the PDs on the InP and GaSb substrates (InAs 
thickness 3.9 nm) at several temperatures were compared (Fig. 5).  The low current 
densities of the PD on the GaSb substrate at forward bias seem to be derived from the 

Fig. 2.	 Structure of  PD on InP substrate.
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high device resistance owing to the thin Be-doped GaSb buffer layer.  The ideal factor 
of the PD on the InP substrate calculated from the current-voltage characteristics at 
112 K was 1.7, which indicates that the current in the PD on the InP substrate is mainly 
composed of generation-recombination current rather than diffusion current.  At reverse 

Fig. 3 (left).  XRCs of SLs on InP and GaSb substrates.
Fig. 4 (right).  PL spectra of SLs on InP and GaSb substrates. 

Fig. 5.	 Current-voltage characteristics of PDs on InP and GaSb substrates (The PD on the GaSb 
substrate contains 3.9-nm-thick InAs layers).
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bias, the dark current of the PD on the InP substrate is comparable to that on the GaSb 
substrate at higher temperature.  However, the separation of the dark current densities 
becomes more noticeable at a lower temperature.  The temperature dependence of dark 
current densities at the reverse bias of −0.1 V is shown in Fig. 6.  The dark current 
densities increase exponentially as the inverse of temperature decreases (i.e., temperature 
increases).  The factors n of the PDs on the InP and GaSb substrates were calculated 
using the equation 

	 J ∞ exp(−Eg/nkT),	 (1)

where J, Eg, k, and T stand for dark current density, band gap of the absorption layer, 
Boltzmann constant and temperature, respectively.  The ideal value of factor n is 1, and 
it increases in accordance with the generation-recombination process via defects.(13)  The 
factors n were 1.8 and 1.3 for the PDs on the InP and GaSb substrates, respectively.  This 
result also suggests that the generation-recombination current is dominant in the PD on 
the InP substrate.  In a previous study, threading dislocations are found to be generated 
at the initial stage of the GaSb buffer layer growth and propagate to the SL.(10)  It is 
inferred that the dark current of the PD on the InP substrate is generated by the threading 
dislocations.  Suppression of threading dislocation in the SLs is necessary.
	 The external quantum efficiency spectra of the PDs were measured.  The PD on 
the InP substrate showed an external quantum efficiency of about 10% around the 
wavelength of 5 μm (Fig. 7).  This value was comparable to those of the PDs on GaSb 
substrates.  This result shows that the quantum efficiency was not sensitive to the 
threading dislocations, which is in contrast to the result of the dark current.  It is reported 
that the quantum efficiency increases proportionally to the thickness of the SL absorption 
layer.(14)  It is expected that a thicker absorption layer would improve the quantum 
efficiency.  

Fig. 6 (left).  Temperature dependence of dark current densities of PDs on InP and GaSb substrates 
(The PD on the GaSb substrate contains 3.9-nm-thick InAs layers). 
Fig. 7 (right).  External quantum efficiency spectra of PDs on InP and GaSb substrates (The PD on 
the GaSb substrate contains 3.9-nm-thick InAs layers). 
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4.	 Conclusions

	 Mid-infrared PDs with the type-II InAs/GaSb SL absorption layer grown on InP 
substrate were demonstrated.  Although the dark current of the PD on the InP substrate 
is higher than that of the PD on the GaSb substrate, the external quantum efficiency of 
10% was comparable to that on the GaSb substrate.  The InAs/GaSb SLs grown on InP 
substrates have the potential to serve as the absorption layer of mid-infrared PDs.

References

	 1	 S. D. Das, S. L. Tan, S. Zhang, Y. L. Goh, C. H. Tan and J. David: Proc. 6th EMRS DTC 
Technical Conference (2009) B7.

	 2	 J. Bajaj, G. Sullivan, D. Lee, E. Aifer and M. Razeghi: Proc. SPIE 6542 (2007) 65420B. 
	 3	 M. Walther, J. Schmitz, R. Rehm, S. Kopta, F. Fuchs, J. Fleisner, W. Cabanski and J. Ziegler: J. 

Cryst. Growth 278 (2005) 156.
	 4	 H. S. Kim, E. Plis, J. B. Rodriguez, G. D. Bishop, Y. D. Sharma, L. R. Dawson, S. Krishna, J. 

Bundas, R. Cook, D. Burrows, R. Dennis, K. Patnaude, A. Reisinger and M. Sundaram: Appl. 
Phys. Lett. 92 (2008) 183502.

	 5	 P.-Y. Delaunay, B. M. Nguyen, D. Hoffman and M. Razeghi: Proc. SPIE 6542 (2007) 654204.
	 6	 J. Chen, Y. Zhou, Z. Xu, J. Xu, Q Xu, H. Chen and L. He: J. Cryst. Growth 378 (2013) 596.
	 7	 B.-M. Nguyen, D. Hoffman, E. K. Huang, S. Bogdanov, P.-Y. Delaunay, M. Razeghi and M. Z. 

Tidrow: Appl. Phys. Lett. 94 (2009) 223506.
	 8	 B. Brar and D. Leonard: Appl. Phys. Lett. 66 (1995) 463.
	 9	 P. M. Thibado, B. R. Bennett, M. E. Twigg, B. V. Shanabrook and L. J. Whitman: J. Vac. Sci. 

Technol. A14 (1996) 885.
	10	 K. Miura, Y. Iguchi and Y. Kawamura: J. Cryst. Growth 378 (2013) 121.
	11	 I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan: J. Appl. Phys. 89 (2001) 5815.
	12	 W. M. Yim and R. J. Paff: J. Appl. Phys. 45 (1974) 1456
	13	 H. Inada, K. Miura, H. Mori, Y. Nagai, Y. Iguchi and Y. Kawamura: Proc. SPIE 7660 (2010) 

76603N.
	14	 A. Hood, D. Hoffman, B.-M. Nguyen, P.-Y. Delaunay, E. Michel and M. Razeghi: Appl. 

Phys. Lett. 89 (2006) 093506.


