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	 In this paper, feature extraction based on a subspace-based identification technique 
for a transient response of a semiconductortype gas sensor is proposed.  A typical gas 
sensor response can be interpreted as the sum of step responses of the first- or high-
order lag system, and we have investigated the feature extraction method of the sensor 
output, which can be approximated by Prony’s method.  The method gives the time 
constant and gain parameters of the sensor response, which includes useful information 
for a discrimination of sample gases.  In this paper, we show a feature extraction method 
based on a subspace-based identification for the step response of the sensor.  The sum of 
exponentials model in Prony’s method can be represented as a state space model.  Then, 
the system matrices can be estimated by the multi-input multi-output (MIMO) output 
error state space model identification (MOESP)-like procedure.  Numerical simulation 
shows that the proposed algorithm can be effective in feature extraction, and the method 
can be applied to the sensor response to mixture gases.

1.	 Introduction

	 Odor sensing systems combining gas sensors with multivariate analysis (MVA) 
methods, called electric nose systems,(1) have been paid much attention in various areas.  
Electric nose systems generally have many gas sensors as elements in the sensor array 
to discriminate odorants, and semiconductor-type gas sensors are suitable sensors as the 
element because of their stability and other advantages.  The gas sensor in electric nose 
systems is basically expected to have a high selectivity and sensitivity.  Semiconductor 
gas sensors, however, have a low selectivity; therefore, a feature extraction method from 
the transient response of the sensor(2) has been proposed to improve the selectivity in the 
MVA by the augmentation of the feature vector.
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	 In this paper, feature extraction based on a subspace-based identification technique 
for a transient response of a semiconductor-type gas sensor is considered.  A typical gas 
sensor response can be interpreted as the sum of step responses of the first- or high-order 
lag system; thus, we have investigated the feature extraction method of the sensor output, 
which can be approximated by Prony’s method.(3)  The method gives the time constant 
and gain parameters of the sensor response, which includes useful information for a 
discrimination of sample gases.
	 This paper shows a feature extraction based on a subspace-based identification 
method, called the multi-input multi-output (MIMO) output error state space model 
identification (MOESP) method(4,5) for the step response of the sensor.  The sum of 
exponentials model in Prony’s method can be represented as a discrete time state space 
model.  Then, the system matrices can be estimated by the MOESP-like procedure.  
Numerical simulation shows that the proposed algorithm can be effective in feature 
extraction, and the method can be applied to the sensor response to mixture gases.

2.	 Review of Sensor Response Modeling

	 Assuming that the gas reaction on the surface of the sensor can be regarded as a first-
order reaction, the transient response of the sensor can be modeled as the sum of the step 
response of the discrete first-order lag system.  Then, we have

	 yk =
n

i=1
Ci(1 − rk

i )˜ ,	 (1)

where

	 ri = exp(−∆t/τi).	 (2)

∆t is the sampling period, τ is a time constant and C is a steady-state value that means the 
initial concentration or saturation mass of adsorption.  n is the order of the model, which 
means the number of gas components.  Strictly speaking, even if a single gas is provided 
to the sensor, the order of the sensor response model is not first-order.  The dominant 
parameters that should be extracted, however, are obtained from the model with n = 1.  
Therefore, the order of the model can be treated as the number of gas components.
	 The main problem is to obtain the above parameters of the model, that is, τ and C in eq. (1).  
First, we consider the exponential function fitting in Prony’s method(3) to approximate the 
sensor response.  To obtain τ and C, the sensor output model (1) can be represented as 
the sum of exponentials.  Then, using the following L-step ahead differential,

	 yk = ỹk+L − ỹk ,	 (3)

the sum of exponentials can be introduced to rewrite the output
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	 yk =
n

i=1
mirk

i .	 (4)

The represented gain m and C are related as

	 mi = Ci(1 − exp(−L∆t/τi)),            (i = 1, ... , n)	 (5)

then, we consider the estimations of τ and C through the identification of the model 
shown in eq. (4).

3.	 Subspace-Based Prony’s Method

	 In this section, we show the estimation method of the sum of exponentials based on 
the subspace-based Prony’s method.  Equation (4) added the noise term ek, which can be 
represented as the discrete time state space model:

	 xk+1 = Axk,	 (6)

	 yk = cT xk + ek,	 (7)

where the system matrices A and c and the initial state vector x0 are

	 A =

r1 0
r2

. . .
0 rn

,	 (8)

	 cT = [m1 m2 ··· mn],	 (9)

	 x0 = [1 1 ··· 1].	 (10)

	 Here, the stacked vector defined as follows is introduced:

	 yi(k + N) = [yT
k+N , yT

k+N+1,    , yT
k+N+i−1]T... ,	 (11)

where yi(k + N)  i.  i is the auxiliary order and N denotes the data length.  The stacked 
vector of the noise ei(k+N) can be defined similarly.  Then, the Hankel matrix by using 
the stacked vectors is defined as

	 Yk,i,N =  [yi(k) yi(k + 1), ···, yi(k + N − 1)].	 (12)
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Corresponding definitions for the noise Ek,i,N are also defined.  In relation to the order of 
the system n, the pair i and N satisfy i > n and N  n.  Defining the state vector sequence 
as

	 Xk,N =  [xk, xk+1,···, xk+N−1],	 (13)

we obtain the following data equation:

	 Yk,i,N = Γi Xk,N + Ek,i,N.	 (14)

Γi, called the extended observability matrix, is defined as

	

cT

··
·

cTA i−1

cTAΓi = .	 (15)

The key problem of the subspace method is to estimate the column space of Γi including 
the system matrices.
	 To extract the column space of Γi, compute the SVD(6) of the matrix Yk,i,N given in eq. (16), 
i.e.,

	 Yi,k,N = [Un Un ]
Σn

Σ2O
O

(Vn )T
Vn   T

,	 (16)

where “ ” denotes perpendicular and the matrix Σi is diagonal.  The matrix Un  i×n gives 
the estimate of Γi.  The order of the matrix Σn can be equal to that of the system and Σ2 
is zero matrix when ek = 0.  In this case, Σ2 has the same singular values smaller than the 
n-th largest singular value on the diagonal.  Note that to evaluate the obtained singular 
values, the order of the system, that is, the number of components of gases should be 
determined.
	 Using the matrix Un given in eq. (16), solve the following set of equations
to estimate the system matrices Â and ĉ.

	 ĉ = Un (1, :)	 (17)

	 U(1)
n Â = U(2)

n 	 (18)

In eq. (17), the submatrix of Un is denoted by using a MATLAB-like notation.  U(1)
n  is 

the submatrix composed of the first (i − 1) rows of the matrix Un, and U(2)
n  is constructed 

using the last rows in a similar way.  Equation (18) expresses the shift-invariance 
property in the estimate Un.  The time constant τ can be estimated by applying the 
eigenvalue decomposition (EVD) to Â.
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	 Once the time constants can be obtained, then we can estimate the gain m to 
minimize the following cost function

	 JN =
N

k =0
yk −

n

k =1
mirk

i

2

.	 (19)

Then, we have

	 mn = (RN
T  RN)−1 RN yN,	 (20)

where

	 mn = [m1 m2 ··· mn]T ,	 (21)

	 yN = [y0 y1 ··· yN−1]T ,	 (22)

	 RN

1 · · · 1
r1 r2 · · · rn
...
...

...
rN−1

1 rN−1
2 · · · rN−1

n

= . . .

1

.	 (23)

4.	 Numerical Example

	 We consider the single-input single-output (SISO) system with the following 
parameters, which means that the single gas sensor responded to the mixture gas.

	 τ = {20, 5, 50}	

	 C = {3, 5, 2}	

The output data length N = 5000 and the sampling period ∆t = 0.05.  The differential 
interval and the auxiliary order are chosen as L = 900 and i = 1500, respectively.  Note 
that the auxiliary order is chosen as a large number in comparison with the system 
order.  The noise sequence ek is a realization of white Gaussian noise with zero mean, 
and the variance of the noise is adjusted as the output SNR = 35 dB.  Figure 1 shows the 
simulated sensor response (solid line) with the noise and the response of the component 
outputs (dashed line).  The problem is to estimate the parameter pairs of (τ, C) from the 
sensor output data denoted by the solid line in Fig. 1.  Applying the proposed method, 
one example of the obtained estimates of (τ, C) is as follows.
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	 τ = {50.85, 20.63, 5.020}	

	 C = {1.907, 3.049, 5.036}	

The parameters are sorted by τ.  It shows that the feature parameter of each component 
can be estimated satisfactorily.  Then, the common logarithm of the singular value 
matrix Σi shown in eq. (16) can be shown in Fig. 2.  Figure 2 shows the first ten largest 
singular values only, and we can see that the matrix has three large singular values, that 
is, the number of gas components can be determined as three.  Figures 3 and 4 show the 
histogram plots of the estimates (τ, C) obtained under the same condition in 100 trials 
with different noise realizations.  We can see that the time constant and gain parameters 
can be well estimated.  The results show that the proposed algorithm can extract and 
isolate the feature parameters.
	 We can readjust user-defined parameters L and i to improve the estimates (τ, C) under 
a low SNR condition; however, the estimates can be inaccurate and we have to consider 
a more rational guideline to determine the parameters L and i in future work.

5.	 Conclusions

	 In this paper, we have considered the feature extraction method based on a subspace-
based identification for the step response of the sensor.  The sum of exponentials model 
in Prony’s method could be represented as a discrete time state space model.  We have 
derived the subspace-based Prony’s method by the MOESP-like procedure.  Numerical 
simulations have shown that the proposed algorithm can be effective in feature 
extraction, and the possibility of feature extraction for the sensor response to mixture 
gases.

Fig. 1.	 (Color online) Simulated sensor output (solid) and component outputs (dashed).
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Fig. 2.  (Color online) Results of singular value decomposition.

Fig. 3 (left).  Histogram plots of estimated time constants (τ = 5, 20, and 50).
Fig. 4 (right).  Histogram plots of estimated steady-state values (C = 2, 3, and 5).


