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We present evidence from both simplified and realistic models of anisotropic wet
chemical etching that the macroscopic etch rate can deviate from the linear Arrhenius
temperature dependence.  The results are rationalized by using the recently established
formulation of the apparent macroscopic activation energy as an average over the micro-
scopic activation energies, including a correction term.  The study shows that care should
be taken and crosschecking should be practiced when assigning the macroscopic activation
energy to one (or more) atomistic process(es).  In particular, we show that the fractions of
removed particles should be used to decide the nature of the dominating process, not the
surface fractions.  We conclude that non-Arrhenius behaviour can be expected when the
fractions of removed particles change significantly over the considered range of tempera-
tures.

1. Introduction

During wet chemical etching of crystalline silicon the liquid-solid interface (surface) is
an example of an evolving nonequilibrium open system driven by the environment through
the removal of particles according to site specific reaction rates pα.  The fact that the
experimental etch rate usually follows a linear Arrhenius dependence with temperature
(displaying a constant apparent macroscopic activation energy Eα

(1,2)) temptatively sug-
gests that only one surface site type (from all the possible types α = 1, 2, ..., M) dominates
the macroscopic evolution of the surface and that the macroscopic activation energy simply
corresponds to the microscopic activation energy Eα of that site (i.e., Ea ≈ Eα for one
specific site type α).  Furthermore, since it should be possible to describe the apparent
activation energy as a weighted average of the microscopic activation energies

(i.e., E w Ea
M~ α αα =∑ 1

), the constant-slope experimental behaviour suggests that one single
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site dominates the weighted average.  A blind identification of the weights wα as the surface
fractions fα eventually leads to the idea that the macroscopic activation energy corresponds
to the activation energy of the majority sites on the surface.  It is well known, however, that
the etching process at Si(111) miscut surfaces proceeds by means of step propagation
(which corresponds to the removal of minority sites) rather than by terrace-site removals
(removal of majority sites). Thus, we are confronted with the following question: is etching
really controlled by the majority sites as suggested by the linear Arrhenius behaviour or is
it dominated by some minority sites, perhaps even several minority sites working together?
How can we quantitatively determine which site is mostly responsible for the overall
etching process?

In this article, we show that the direct assignment of the apparent activation energy to
the majority sites should be avoided (even in the case of fully linear Arrhenius behaviour)
and that the correct assignment to one or several surface sites requires the use of, not the
relative appearance fα of the different site types on the surface (surface fractions), but the

relative removal w f p f pM
α α α ββ β= =∑/ 1 of each site type as compared with all the other

types (activity fractions).  In other words, we show that it is the maximum activity fraction
wα that should be used to decide which is the dominating site, not the maximum surface
fraction fα.

We first motivate the necessity of understanding the relationship between macroscopic
and microscopic activation energies, and present examples of both Arrhenius and non-
Arrhenius behaviour that can be obtained from simplified and realistic models of anisotro-
pic etching (Sections 2 and 3).  This should underline the fact that the macroscopic
activation energy does not necessarily correspond to only one surface site but it is rather
some sort of nontrivial average of the microscopic activation energies.  In Section 4, we
present the correct relationship between the macroscopic and microscopic activation
energies(3) and proceed to rationalize the obtained results.  Finally, we draw our conclu-
sions in Section 5.

2. Realistic Model for Anisotropic Wet Chemical Etching

Anisotropic wet chemical etching is a nonequilibrium process in which both the
microscopic surface roughness and morphology, and the macroscopic orientation-depen-
dent etch rate are essentially determined by the relative values of the microscopic (atomis-
tic) reaction rates.  The origin of the (large) differences in site-specific rates is found in two
microscopic mechanisms:(4) the weakening of backbonds following OH termination of
surface atoms and the existence of significant interaction between the terminating species
(H / OH).  As a result, the total (local) energy of a surface atom can be expressed as the sum
of three terms:(5)

E E e e e e= + +( ) + +( )∑∑bonds OH/H
TA

OH/OH
TA

OH/H
FN

OH/OH
FN , (1)

where Ebonds is the bonding energy that takes into account the bonds that exist with the first

nearest neighbours and e e e eOH/H
TA

OH/OH
TA

OH/H
FN

OH/OH
FN+( ) +( )( )∑ ∑ symbolically denotes the
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total energy from the interactions between the OH groups terminating the target atom TA
(the first neighbours FN) and H and/or OH terminating the indirect second neighbours of
the target atom TA (first neighbours FN).  The geometrical restrictions to hydroxyl
termination in the presence of indirect second neighbours is a manifestation of the
important role of steric hindrance in anisotropic wet chemical etching.  In this model, the
source of steric hindrance is identified as the (H/OH-terminated) indirect second neighbours.

The local dynamics of this model consists of random removals of surface sites with

probabilities p p e E k TB= 0
– /Δ , where ΔE is defined as the activation energy.  Here, p0 and Ec

are parameters describing the different surface atom types (i.e., surface sites).  The function
max (0, E – Ec) is used for implementing the Metropolis algorithm.(6) Following the
discussion of Gosálvez et al. in,(5) and the notation used in surface studies of Si(111),(7) we
consider the following surface site types:
1. Type 0: Nonbonded atoms that have not been removed: unlinked (UL)
2. Type 1: Singly bonded atoms: trihydrides (TRI); also referred to as kinks.
3. Type 2A: Doubly bonded atoms on ideal (100) surfaces: terrace dihydrides (TD)

4. Type 2B: Vertical doubly bonded atoms at ideal 121[ ] steps: vertical step dihydrides

(VSD)

5. Type 2C: Horizontal doubly bonded atoms at ideal 121[ ] steps: horizontal step

dihydrides (HSD); plus all other possible doubly bonded atoms.
6. Type 3A: Triply bonded atoms at ideal (111) surfaces: terrace monohydrides (TM)

7. Type 3B: Triply bonded atoms at ideal 121[ ]steps: step monohydrides (SM); plus all

other possible triply bonded atoms.
The atoms of type 0 are included for completeness since they can occasionally appear in
connection to the formation of overhangs.  This is, however, a rare event in the simulations
and has a negligibly small effect on the evolution of the surface.  These atoms are removed
(with probability one) as soon as they are encountered.  Accordingly, one can say that in
this model the surface contains M=6(+1) atom types.

Note that due to the different possible combinations of the terminating species H and
OH around a surface site, the energy E and the activation energy ΔE take different values
for atoms of the same type.  The six pairs of parameters (p0α, Ecα) for Types 1, 2A,... 3B can
be determined by comparison with experimental results.  One can choose the parameters so
that the relative values of the etch rates of a number of surface orientations agree with those
from an experiment.  By adjusting the parameters p0α, the simulated etch rates can be
shifted up/down in an Arrhenius plot.  Similarly, the slopes of the etch rates can be
controlled by tuning the parameters Ecα.  Alternatively, it is also possible to choose the
parameters (p0α, Ecα) on the basis of a comparison of the simulated surface morphology
with that from experiments.  An example of this approach is provided in ref. 8.

In this work, we consider  the same two sets of values for the (p0α, Ecα) parameters
(Table 1) as for cases A and B in ref. 8.  Although the gross morphologies of most surface
orientations are similar for both parameter sets, case A leads to the formation of pyramidal
hillocks on (100) and case B to the formation of round pits.  Examples of the typical
dependence of the etch rate on temperature and some morphologies obtained with this
etching model can be seen in Figs. 1(a)–1(c) for case A.
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Fig. 1. Arrhenius behaviour of the etch rate for a number of crystallographic orientations using the
parameter values of case A.  A representative snapshot of the surface morphology for each series is
shown in the inserts.

Table 1

Summary of parameters for cases A and B. p0α
α= eS kB/ , α = 1, 2A, ...3B. Sα measured in eV/K and

Ecα in eV.

S1 S2A S2B S2C S3A S3B

A 1.30×10–3 1.10×10–3 1.07×10–3 1.10×10–3 5.47×10–5 2.59×10–4

B 1.50×10–3 1.75×10–3 7.99×10–4 1.75×10–3 4.07×10–4 1.03×10–3

E1 E2A E2B E2C E3A E3B

A 0.658 3.633 3.688 3.563 6.309 5.686
B 0.908 3.555 3.555 3.555 6.307 5.521
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3. Thermal Flipping Chessboard (TFC)

The thermal flipping chessboard (TFC) is an analytically solvable, simplified model for
anisotropic wet chemical etching.(3) The model considers a (two-dimensional) system with
N total sites that can belong to M possible site types α = 1, 2, ..., M and can be removed from

the system with probabilities p p e E k TB
α α

α= 0
– /Δ independently of the state of the

neighbouring sites.  The removal of a site of type α leads to the appearance of a site of type

β= 1, 2, ..., M with probability πα β→ .  Thus, the transition matrix ∏ = ( ) ≡ ( )→π παβ α β

characterizes the probability of any conversion between the M species.
The TFC model contains the fundamental components for the simulation of chemical

etching, namely, that the removal of one surface site produces the incorporation of new
sites into the surface.  However, it disregards the changes that might occur in the site types
of the neighbouring surface sites.  Although this somewhat limits the predicting power of
the model for realistic applications, most features of the etching process can be easily
studied with this simplified approach.

The important feature of the TFC model is that the transition matrix (παβ) is an external
parameter, independent of other variables such as the removal probabilities pα and the
temperature T.  The independence of Π from temperature allows the TFC model to be
solved analytically exactly for any number M of particle types.  The possibility of
comparison to exact values makes the TFC systems ideal for testing and judging new ideas
and/or strategies for the simulation of anisotropic etching.

Figure 2(a) shows a typical Arrhenius plot for the total removal rate versus inverse
temperature for the TFC model with three types of particle (M = 3).  Here, we have used the
values described in ref. 3 for the parameters p0α, ΔEα, and Π:
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Note that the exact solution does not follow linear behaviour exactly, as implied by the
non-constant value of the activation energy Ea (i.e., the slope) in the insert.  As Figs. 2(b)–
2(d) show, this behaviour manifests itself in the form of strongly non-linear curves for the
surface fractions, particularly in the case of the majority species (Figs. 2(c)–2(d)).  These
plots illustrate the fact that the combination of microscopic removal rates that follow the
Arrhenius behaviour does not guarantee linear Arrhenius behaviour for the global macro-
scopic rate.  The question is whether this non-Arrhenius behaviour is an artifact due to the
simplifications made in this model or whether it can also be obtained in more realistic
approaches,  particularly in view of the fact that the realistic model of  Section 2 produces
linear Arrhenius behaviour for all surface orientations.

In order to address this point, we have conducted simulations for the same orientations
as those shown in Fig. 1 using the realistic model with the parameter values of case B.  The
results are shown in Figs. 3(a)–3(c).  The existance of non-Arrhenius behaviour is
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particularly clear for the orientations in the (100)→(111) series of Fig. 3(c).  This shows
that the behaviour depends on the choice of parameters and is not an anomaly or an artifact
associated with one particular model.

These examples show that, from a theoretical perspective, both Arrhenius and non-
Arrhenius behaviour are possible, underlining the fact that the macroscopic activation
energy does not necessarily correspond to only one surface site but is rather some kind of
nontrivial average of the microscopic activation energies.  The previous examples demostrate
the need to understand the relationship between macroscopic and microscopic activation
energies. Furthermore, we need to understand why the behaviour is Arrhenius
in some cases and non-Arrhenius in other cases.

4. Relationship Between Macroscopic and Microscopic Activation
Energies

The previous results suggest that the macroscopic activation energy is a nontrivial
function of the microscopic activation energies.  The specific mathematical form of this
function has been established recently.(3) As it turns out, the apparent macroscopic

Fig. 2. A typical Arrhenius plot of (a) the total rate of removal of particles and the (average) surface
fractions (b) <f1>, (c) <f2>, and (d) <f3> for the TFC model with M = 3.  A representative snapshot of
the system is shown in the insert in (a).
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activation energy Ea is only partially explained by the expected expression for the average

of the microscopic activation energies E w Ea
p

p
( ) = ∑ αα α  and a correction term accounting

for the temperature dependence of the surface fractions E w Ea
f

f
( ) = ∑ αα α

has to be

included:

E E E w E Ea a
p

a
f

p f= + = +( )( ) ( ) ∑ α
α

α α (3)

Fig. 3. Non-Arrhenius behaviour of the etch rate for a number of crystallographic orientations using
the parameter values of case B.  A representative snapshot of the surface morphology for each series
is shown in the inserts.
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Here, the weights wα are the activity fractions defined in Section 1, Epα is the
microscopic activation energy of the α-type sites (i.e., the slope of pα in an Arrhenius plot)
and Efα is the corresponding slope of fα in such a plot.  Note that one can always define an

effective activation energy E E Ea p f
eff = +

α α
for each surface type so that the macroscopic

activation energy can be formulated as a simple weighted average:

E w Ea = ∑ α α
α

eff
. (4)

As an example of the use of eq. (3), Fig. 4(a) shows the etch rates of (100) and (110)
obtained using the parameter values of case A for the realistic model.  In order to
understand the origin of the macroscopic activation energy for the case of (100), the first

term Ea
p( ) in eq. (3) is obtained as the weighted sum of the microscopic activation energies

shown in Fig. 4(b) and the second term Ea
f( ) is obtained as the weighted sum of the

microscopic activation energies shown in Fig. 4(c).  Figure 5(a) shows that Ea
p( ) accounts

for about 72% of Ea whilst Ea
f( ) accounts for the remainder.  Similar results are obtained for

the case of (110).  Note that, in the case of non-Arrhenius macroscopic behaviour a similar
study can be made for the temperature dependence of the surface fractions using fitting
functions that deviate from the linear case.

The activity fractions wα can be used as indicators of the relative contributions of the
different surface sites to the macroscopic activation energy.  Figure 5(b) shows that the
weights wα are good approximations of the relative contributions εα of each atom type to
the total macroscopic activation energy, defined as:

εα
α α

β ββ

=
∑

w E

w E

eff

eff . (5)

This feature allows for the unambiguous identification of the particular surface sites that
effectively control the etching process.  As an example, Fig. 5(b) shows that under the
conditions of case A the etching process at both (100) and (110) is dominated by the
removal of horizontal step dihydrides (2C), which corresponds to a minority site appearing
on less than 1% of the surface according to Fig. 4(c) for (100).  The vertical step dihydrides
(2B) and the step monohydrides (3B) are next in importance in the etching process (Fig.
5(b)).  Note that although the 3B sites are a majority site (about 40% of the surface) the 2B
sites are minority (present less than 1%), as shown by Fig. 4(c).  Similar results are
obtained for the case of (110).

This analysis unambiguously establishes that the etching process in (100) under the
chosen conditions (leading to the formation of pyramidal hillocks and texturized surfaces
at the steady state here considered) consists of the propagation of monohydride-terminated
steps (a majority site together with the terrace monohydrides, see Fig. 4(c)) by means of an
unzipping process in which the removal of the step monohydrides triggers a local burst of
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Fig. 4. Arrhenius plots for (a) the etch rates of (100) and (110); (b) the (average) removal rates <pα>
for (100); and (c) the (average) surface fractions <fα> for (100).  The parameter values of method A
for the realistic model are used.

activity by enabling the removal of vertical and horizontal step dihydrides, as revealed by
the high activity fractions for these two sites.

The previous analysis is an example of the use of the activity fractions in order to
quantitatively measure the way in which the minority sites dominate the process.  It also
ilustrates the fact that the macroscopic activation energy is a complicated function and
should not be identified with one atomistic process only; particularly not with the majority
sites on the surface.  We conclude that the activity fractions wα should be used to decide the
nature of the dominating species, not the surface fractions fα.

Finally, let us note that, since the activity fractions are the relevant parameters for
deciding on the relative role of the different surface sites, and, most importantly, since they
can be used as good approximations of the relative contributions εα to the total macroscopic
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activation energy, it becomes apparent that significant changes in the activity fractions
within the explored range of temperatures will lead to the non-Arrhenius behaviour (see
Fig. 6(a)).  On the other hand, approximately constant activity fractions within the
temperature range ensure a linear Arrhenius behaviour  (see Fig. 6(b)).  Note that, in this
particular example, not only the activity fractions show larger slopes in Fig. 6(a) (as shown
by the values of the quoted activation energies for sites 2C, 3B, 2B, and 1), but also two of
the significant contributions (2B and 1) change so vigorously that they actually cross each
other significantly.  Note, however, that this crossing is not the origin of the non-Arrhenius
behaviour.  The only necessary condition for non-Arrhenius behaviour is a significant
change in one or more of the dominant activity fractions.

5. Conclusions

By using simplified and realistic models of anisotropic wet chemical etching we show
that the macroscopic etch rate can deviate from the linear Arrhenius temperature depen-
dence.  We conclude that the non-Arrhenius behaviour occurs when the activity fractions
(i.e., the normalized fractions of removed particles) change significantly over the consid-
ered range of temperatures.  In comparison, approximately constant activity fractions
within the considered temperature range ensure linear Arrhenius behaviour.

Fig. 5. (a) Macroscopic activation energies of (100) and (110) explained as the sum of two terms

E E Ea a
p

a
f= +( ) ( ) .  (b) Relative contributions of each surface site (α = 1, 2A, 2B,...) to the

macroscopic activations energies of (100) and (110).  Exact measured values (εα) and their
approximations (wα) are given.
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