S & M 0005

Grain-Oriented and Mn-Doped $(NaBi)_{(1-x)/2}Ca_xBi_4Ti_4O_{15}$ Ceramics for Piezo- and Pyrosensor Materials

Tadashi Takenaka and Koichiro Sakata

Faculty of Science and Technology, Science University of Tokyo Noda, Chiba-ken, 278 Japan

(Received March 5, 1988; Accepted April 10, 1988)

Key words: bismuth layer-structured ferroelectrics, hot forging method, grain orientation, piezoelectric properties, pyroelectric properties

Calcium modifications of $(NaBi)_{(1-x)/2}Ca_xBi_4Ti_4O_{15}$ (NCBT-100x) ceramics, which belong to a bismuth layer-structured ferroelectric (BLSF) family, and their grain orientation effects are studied using the hot forging (H.F.) method on the piezoelectric and pyroelectric properties for their sensor materials. The dielectric constant ε_s is small and almost constant at the wide range of composition (x = 0 to x = 1). The Curie temperature, T_c , increases as the Ca concentration increases. The grain orientation (H.F.) effects enhance the piezo- and pyroelectric properties by two or more times that of nonoriented ones. The H.F. Mn-doped NCBT-5 ceramics, with a lower free permittivity $\varepsilon_{33}^T/\varepsilon_0$ (= ~130) and higher electromechanical coupling factor k_{33} (=33 ~ 40%), along with a higher anisotropy, k_{33}/k_{31} (=13 ~ 17), are very attractive candidate materials for hydrophone applications at high temperatures or for high-frequency ultrasonic transducers with a high Curie temperature. Pyroelectric properties are also very interesting for sensor materials, and the figure of merit (F_v) is comparable to that of PZ-based or PT-based materials.

1. Introduction

Important ferroelectric or antiferroelectric oxide ceramics for dielectric, piezoelectric, electrostrictive and/or pyroelectric applications are restricted to perovskite-type, tungsten bronze-type, and bismuth layer-structured compounds. (1,2) One recent trend in the study on piezo- and/or pyroceramic compounds is the use