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 Current diagnostic methods for coronavirus disease 2019 (COVID-19) mainly rely on reverse 
transcription polymerase chain reaction (RT-PCR). However, RT-PCR is costly and time-
consuming. Therefore, an accurate, rapid, and inexpensive screening method must be developed 
for the diagnosis of COVID-19. In this study, we combined image processing technologies with 
deep learning algorithms to enhance the accuracy of COVID-19 identification from chest X-ray 
(CXR) sensor images. Contrast-limited adaptive histogram equalization (CLAHE) was used to 
improve the visibility level of unclear images. In addition, we examined whether our image 
fusion technique can effectively improve the performance of seven deep learning models 
(MobileNetV2, ResNet50, ResNet152V2, Inception-ResNet-v2, DenseNet121, DenseNet201, and 
Xception). The proposed feature fusion technique involves merging the features of an original 
image with those of an image subjected to CLAHE and then using the merged features to retrain, 
test, and validate deep learning models for identifying COVID-19 in CXR images. To avoid 
incidences of images not matching reality and to ensure high model stability, no data 
enhancement was conducted. The results of this study indicate that the proposed image fusion 
technique can improve the classification evaluation indicators, especially the sensitivity of deep 
learning models in two-class and three-class sortings. Sensitivity refers to a model’s ability to 
detect an infection correctly. The highest accuracy in this study was achieved when combining 
Xception with the proposed feature fusion technique. In three-class sorting, the accuracy of this 
method was 99.74%, with the average accuracy of fivefold cross-validation being 99.19%. In 
two-class sorting, the accuracy of the aforementioned method was 99.74%, with the average 
accuracy of fivefold cross-validation being 99.50%. The results showed that the proposed image 
processing technologies with deep learning algorithms have exceptional generalization.
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1. Introduction

 Coronavirus disease 2019 (COVID-19) began spreading rapidly worldwide in December 
2019.(1,2) As of February 1, 2021, over 100 million people have been infected by COVID-19, and 
numerous people have died because of it. Classic clinical symptoms of COVID-19 include fever, 
respiratory tract infections, pneumonia, multiple organ failure, fatigue, muscle soreness, and 
reductions in the numbers of white blood cells, platelets, and lymphocytes.(3) Currently, reverse 
transcription polymerase chain reaction (RT-PCR) is used to screen for COVID-19; however, 
this technique has some limitations. In certain situations, the ratio of false negatives detected 
with RT-PCR is high, which indicates that even if the test result is negative, a COVID-19 
infection cannot be completely ruled out.(4) Moreover, RT-PCR is expensive, time-consuming, 
and complicated. Therefore, an accurate, rapid, and cheap screening method must be developed 
for diagnosing COVID-19.
 Some countries are using medical imaging technologies, such as computed tomography (CT) 
and chest X-rays (CXRs), to screen for COVID-19.(5–8) CT scans are superior to CXRs in 
revealing early pathological changes in the lung. If diagnosis is performed by an experienced 
radiologist, CT-based diagnosis has a higher sensitivity than CXR-based diagnosis. However, 
CT scans have many cross sections; therefore, CT-based diagnosis is a lengthy and expensive 
process, and technicians must make numerous adjustments in this process. CT technicians might 
come into contact with the patient, and improper disinfection might lead to severe cross 
contaminations. Furthermore, in some areas, a lack of radiologists is a challenge. To overcome 
the aforementioned problems, in this study, we used CXRs for COVID-19 diagnosis because 
CXR imaging is faster and cheaper than RT-PCR.
 In recent years, machine learning has been widely used in computer vision tasks,(9,10) which 
has driven the development of AI in medical diagnosis.(11–17) Deep learning algorithms have 
been widely examined because in contrast to conventional machine learning methods, which 
require manual feature extraction, deep learning algorithms can achieve automatic feature 
extraction. Deep learning techniques can identify fine image features that are not clearly visible 
in a raw image. Compared with conventional image diagnostic processes, which rely heavily on 
manual labor, AI-based image diagnostic processes have higher efficiency, safety, and accuracy; 
thus, AI-based image diagnostic processes enable rapid diagnoses and minimize the medical 
labor involved. 
 With the emergence of the deep Web and the broad application of transfer learning, deep 
learning methods that exhibit favorable results with a small quantity of training data have been 
developed. Apostolopoulos and Tzani(18) used transfer learning to divide data into two sets: one 
set contained 504 images of healthy lungs, 700 images of confirmed bacterial pneumonia, and 
224 images of confirmed COVID-19, and the other set contained 504 images of healthy lungs, 
714 images of confirmed bacterial and viral pneumonia, and 224 images of confirmed 
COVID-19. These images were scaled to 200 × 266 pixels, and the classification layers of the 
developed pretrained model were then fine-tuned. For the first data set, the highest two- and 
three-class accuracies of 98.75 and 93.48%, respectively, were achieved with VGG-19. For the 
second data set, the highest two- and three-class accuracies of 96.78 and 94.72%, respectively, 
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were achieved with MobileNetV2. Ferhat and Deniz(19) developed the COVIDiagnosis-Net 
model and applied it to 4209 images of pneumonia, 76 images of confirmed COVID-19, and 
1583 images of healthy lungs. To solve the problem of insufficient data, they expanded the data 
set by increasing noise, rotating the viewing angle, increasing the brightness, and performing 
mirroring to enhance the original images. The aforementioned authors balanced the number of 
images of the aforementioned three conditions by deleting certain images. The accuracy rate of 
COVIDiagnosis-Net for the aforementioned data was 98.26%. Minaee et al.(20) used transfer 
learning to fine-tune the classification layers of four pretrained models—ResNet18, ResNet50, 
SqueezeNet, and DenseNet121—and to detect COVID-19 by using CXR images. Among the 520 
images of confirmed COVID-19 and 5000 images not showing COVID-19 infection in the 
experiment, 336 images of COVID-19 from the training data were enhanced through flipping, 
rotation, and distortion. The results indicated that SqueezeNet had a two-class accuracy of 
92.29% for the aforementioned data. Mesut et al.(21) used fuzzy color and stacking techniques to 
eliminate noise from 295 CXR images of COVID-19 conditions, 65 CXR images of healthy 
lungs, and 98 CXR images of pneumonia for enhancing the image quality. They used the 
MobileNetV2 and SqueezeNet deep learning models for feature extraction, then performed 
social mimic optimization, and finally extracted effective features from 1000 features with an 
accuracy of 99.27%. By referencing the Darknet-19 model,(22) Ozturk et al.(23) proposed the 
DarkCovidNet model for detecting COVID-19. The architecture of the DarkCovidNet model 
contains fewer network layers and convolution kernels than that of the Darknet-19 model. The 
aforementioned authors selected the leaky rectified linear unit as the activation function of the 
DarkCovidNet model to prevent neuron death. This model was trained using 500 images of 
healthy lungs, 500 images of pneumonia, and 125 images of confirmed COVID-19. The results 
indicated that the DarkCovidNet model had a three-class accuracy of 87.02% and a two-class 
accuracy of 98.08% for the aforementioned data. Chowdhury et al.(24) used a pretrained deep 
learning model based on transfer learning to detect COVID-19 from a set of CXR images, which 
comprised 423 images of COVID-19, 1579 images of healthy lungs, and 1485 images of viral 
pneumonia. They performed image rotation and translation for data enhancement. The results 
indicated that without data enhancement, the two- and three-class accuracies of the 
aforementioned model were 99.41 and 97.74%, respectively. Moreover, with data enhancement, 
the two- and three-class accuracies of the aforementioned model were 99.7 and 97.94%, 
respectively.(24)

 Ohata et al.(25) used pretrained transfer learning models to extract features from CXR 
images. They then used the extracted features in a machine learning classifier. The performance 
of this classifier for two data sets was compared. Each data set comprised 194 CXR images of 
lungs with and without COVID-19, with the CXR images of healthy lungs in the two data sets 
being dissimilar. The results of the aforementioned study indicated that a classification accuracy 
of 98.62% was achieved when combining MobileNet with support vector machine (SVM) and 
that a classification accuracy of 95.64% was achieved when combining DenseNet201 with 
multilayer perceptron. After processing images through contrast-limited adaptive histogram 
equalization (CLAHE), Umri et al.(26) used VGG16 to classify 100 CXR images each of the 
lungs with and without COVID-19 and achieved a classification accuracy of 97.50%. Anunay et 
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al.(27) developed InstaCovNet-19, which is a stacked deep learning network that comprises 
pretrained models of ResNet101, Xception, InceptionV3, MobileNet, and NASNet. They used 
InstaCovNet-19 to apply transfer learning in the classification of 361 CXR images of COVID-19, 
365 CXR images of healthy lungs, and 362 CXR images of pneumonia. These images were 
enhanced using blur color and stacking techniques. InstaCovNet-19 exhibited a three-class 
accuracy of 99.08% and a two-class accuracy of 99.53 for the aforementioned data. By adding a 
dropout layer and two fully connected layers to the Xception model pretrained through transfer 
learning, Khan et al.(28) developed the CoroNet model and classified 310 images of healthy 
lungs, 330 images of bacterial pneumonia, 327 images of viral pneumonia, and 284 images of 
COVID-19. The four-, three-, and two-class accuracies of the aforementioned model were 89.6, 
95.02, and 99.00%, respectively. Wang and Wong(29) designed COVID-Net, which has a residual 
network architecture, to capture the features of CXR images and classify 5538 images of 
pneumonia, 358 images of COVID-19, and 8066 images of healthy lungs. Because the data 
volume was insufficiently large, the data were expanded through translation, rotation, horizontal 
flipping, scaling, and offsetting. The accuracy of COVID-Net for the aforementioned data was 
93.3%. Bhadra and Kar(30) developed a multilayer convolutional neural network model for 
identifying CXR images and applied it to a combination of four databases containing 1130 CXR 
images of COVID-19, 1330 CXR images of pneumonia, and 1330 CXR images of healthy lungs. 
This model achieved an accuracy of 99.1% for the aforementioned data. Karim et al.(31) proposed 
an integrated method that involves combining VGG-19 and DenseNet161 to identify CXR 
images. The combination of VGG-19 and DenseNet161 outperformed combinations of other 
models and exhibited a prediction rate of 94.6% for a database comprising 8066 images of 
healthy lungs, 5538 images of pneumonia, and 358 images of COVID-19. Asmaa et al.(32) 
proposed the DeTraC deep convolution neural network. They enhanced the data of 80 CXR 
images of healthy lungs, 105 CXR images of COVID-19, and 11 CXR images of severe acute 
respiratory syndrome through flipping, translation, rotation, and modification. Moreover, the 
aforementioned authors used principal component analysis to project high-dimensional images 
into a low-dimensional space. This step was performed to reduce the dimensionality and thus 
increase the computational efficiency. They subsequently used transfer learning to adjust the 
weight training process of the model classification layer. The accuracy of the DeTraC model was 
93.1% for the aforementioned database. 
 The studies discussed in the preceding section indicate that current network models for 
COVID-19 diagnosis mostly involve transfer learning. These networks have exhibited 
satisfactory results in the detection of COVID-19 in CXR images from small data sets. However, 
most of the aforementioned studies involved training with unbalanced data sets or data 
enhancement for increasing the number of images. Although data enhancement might yield 
superior experiment results, it can also lead to situations in which the enhanced images do not 
match reality. This may limit the generalizability of the model, and the model might need to be 
validated on a large data set. In this paper, we propose a feature integration technique for CXR 
images. The proposed technique allows deep learning models to obtain crucial features that 
increase the accuracy of deep learning networks. The combination of the proposed technique 
and a deep learning model can help medical staff by providing them a safe and highly effective 
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method for detecting COVID-19 during difficult times. Li et al. proposed MHA-CoroCapsule, a 
capsule network, and evaluated its performance in COVID-19 diagnosis.(33) In contrast to 
networks in other studies, the capsule network involved the use of a multihead attention-routing 
algorithm to quantify the relationship between two capsule layers. The traditional iterative 
dynamic routing process was replaced with a noniterative and parameterized multihead 
attention-routing algorithm, which enabled capsules in the model to jointly attend to information 
from different representational subspaces at different positions. More generalized features were 
extracted from CXRs, thus improving the detection of COVID-19.(33)

 The remainder of this paper is structured as follows. In Sect. 2, we describe the data sets, 
preprocessing procedures, image processing techniques, feature integration process, and deep 
learning models used in this study. In Sect. 3, we present the experiment results and a comparison 
of these results with those in the literature. Finally, in Sect. 4, we present the conclusions of this 
study.

2. Image Fusion Techniques and Deep Learning Networks

2.1 CXR image data set

 The main data set used in this study is publicly accessible and contains CXR images of 
healthy lungs, viral pneumonia, and COVID-19, as depicted in Fig. 1. Each image in this data set 
is in the PNG format. The COVID-19 images in the data set are scaled to 256 × 256 pixels, and 
the other images are scaled to 1024 × 1024 pixels. The adopted data set can be downloaded from 
the website of Kaggle. The present version of this data set contains 1200 images of COVID-19, 
1341 images of healthy lungs, and 1345 images of viral pneumonia. The aforementioned data set 
is continually updated to assist scholars with COVID-19 research.(24)

2.2 Preprocessing of image data

 To increase the rigorousness of the experiment and ensure that the image data contained no 
full duplicates, the obtained data were subjected to pixel-by-pixel image comparisons, and 
duplicate data were excluded. After exclusions, 3875 CXR images remained. These images 

Fig. 1. CXR images in the adopted data set: (a) a chest with COVID-19, (b) a healthy chest, and (c) a chest with 
viral pneumonia.

(a) (b) (c)
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comprised 1197 images of COVID-19, 1340 images of healthy lungs, and 1338 images of viral 
pneumonia. Deep learning models require a unified input format; therefore, after excluding the 
fully duplicate images, all the images were scaled to 224 × 224-pixel grayscale images. 
Subsequently, all the pixels were divided by 225 to yield an input value between 0 and 1 for 
model training and testing.
 The adopted data set was divided into two data sets: data sets A and B. Data set A was used 
for three-class sorting and was formed by excluding duplicate images from the original data set. 
Data set B was used for two-class sorting. Each of these two data sets contained 1197 images of 
COVID-19 and 2678 images not showing COVID-19. The images not showing COVID-19 
comprised images of healthy lungs and viral pneumonia. A total of 80, 10, and 10% of each data 
set were used as the training, testing, and validation sets, respectively. The numbers of images in 
data sets A and B are presented in Table 1.

2.3 Image processing techniques and feature fusion

 Although conventional histogram equalization (HE) can improve image contrast, this method 
involves processing the entire image. When the HE method is used on unevenly lit images, dark 
areas become darker and bright areas become brighter, which results in the severe loss of image 
data. This phenomenon is unacceptable in the processing of medical images. To retain image 
details while improving the image quality, CLAHE was performed in this study. CLAHE 
involves localized processing by dividing an image into many blocks and equalizing each block 
to even out the pixel distribution, enhance the image contrast, and control noise; this process 
results in an increase in the sharpness of details and contours.(34) In Fig. 2, the upper image is the 
original image, and the lower image is that obtained after conducting CLAHE. The processed 
image has sharper details and contours than the original image. The 3875 CXR images were 
subjected to CLAHE to obtain data that were more appropriate for training. The contrast 
threshold was set as 2, and the images were processed in 8 × 8-pixel blocks. After processing, 
the original images (224 × 224 × 1 pixels) were concatenated with the CLAHE-processed images 
(224 × 224 × 1 pixels) to enhance the image expressiveness. The image features of the data 
obtained after feature fusion (224 × 224 × 2 pixels) were increased to improve the model 
accuracy.

2.4 Deep learning models and parameters

 Seven deep learning models were used in this study: MobileNetV2,(35) ResNet50,(36) 
ResNet152V2,(37) Inception-ResNet-v2,(38) DenseNet121,(39) DenseNet201,(38) and Xception.(40) 
These models were retrained, validated, and tested without using pretrained weights. The image 
input dimensions were 224 × 224 × 1 and 224 × 224 × 2 pixels. The size of both the original and 
CLAHE-processed images was 224 × 224 × 1 pixels, and the size of the feature fusion images 
was 224 × 224 × 2 pixels. Through the use of Adam as the optimizer of the deep learning model 
and the adoption of learning rate decay methods, the learning rate was decayed from 0.1 to 
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0.0000001. The rectified linear unit activation function was used to strengthen the nonlinear 
relationship between the layers of the neural network. The strengthening of this relationship 
resulted in originally negative values being output as 0, which prevented situations of overfitting 
to a certain extent and reduced occurrences of gradient disappearance. The number of epochs 
was set as 100 as an early stopping technique. When the model loss function and accuracy did 
not change significantly, the training was stopped and the training model was stored. The batch 
size was set as 16. The loss function for three-class sorting was sparse categorical cross entropy. 
For three-class sorting, softmax was the output function, whose value was set as 3. The 
probability of an image belonging to each image category was calculated, and the highest 
probability was determined as the output. Binary cross entropy was used as the loss function for 
two-class sorting. For two-class sorting, the loss function output was the sigmoid function, 
which was set as 1. The output function for two-class sorting was between 0 and 1. The two 
classes (presence or absence of COVID-19) were distinguished according to whether the output 
was lower or higher than 0.5. The closer the predicted and actual values were to each other, the 
smaller was the loss function.

Table 1 
Images in data sets A and B.
Data set A B
Type COVID-19 Normal conditions Viral pneumonia COVID-19 Without COVID-19

Quantity 1197 1340 1338 1197 Normal conditions: 1340
Viral pneumonia: 1338

Total 3875 3875

(a) (b) (c)

Fig. 2. (Top) Original and (bottom) CLAHE-processed images: (a) a chest with COVID-19, (b) a healthy chest, and 
(c) a chest with viral pneumonia.
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2.5 Research process

 After the CXR images were preprocessed, the original and CLAHE-processed images were 
subjected to feature fusion. Training, validation, and comparisons were performed for the deep 
learning models after the data required for deep learning had been obtained. Figure 3 shows the 
process of creating the three-class data set A. Unlike in the creation process for data set A, the 
non-COVID-19 images were not divided further when creating data set B.

3. Experimental Results and Discussion

 The results obtained with the adopted seven models for data sets A and B were compared. 
Subsequently, a fivefold cross-validation was conducted for the model with the best results. Each 
time, 80 and 20% of all the data were used for training and testing, respectively. The training 
data were verified to not contain any testing data. The adopted image processing techniques and 
proposed feature fusion method were implemented on the CXR images, which were input into 

Fig. 3. Research process.
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the deep-learning-based COVID-19 identification models. The COVID-19 identification 
performance of the models was evaluated using different classification indicators. The three-
class sorting performance was evaluated using the following indicators: accuracy, macro average 
precision, macro average sensitivity, macro average F1 score, and macro average specificity. 
These indicators are defined as
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where i is the CXR category and has a range of 1–3.
 The two-class sorting performance was examined using the following indicators: accuracy 
[Eq. (1)], precision, sensitivity, F1 score, and specificity. Precision, sensitivity, F1 score, and 
specificity are defined as
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where TP, TN, FP, and FN represent the numbers of true positives, true negatives, false positives, 
and false negatives, respectively.
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3.1 Results for data set A

 Tables 2–4 present the accuracy of each model. When the proposed image fusion technique 
was employed, the accuracy of MobileNetV2 increased from 92.50 and 92.76 to 98.19%; the 
accuracy of ResNet50 increased from 96.64 to 98.96%; the accuracy of ResNet152V2 increased 
from 97.41 and 96.38 to 98.44%; the accuracy of Inception-ResNet-v2 increased from 97.15 and 
95.60 to 98.70%; the accuracy of DenseNet121 increased from 97.15 and 97.67 to 98.96%; the 
accuracy of DenseNet201 increased from 97.41 and 96.89 to 98.70%; and the accuracy of 
Xception increased from 97.41 to 99.74%. The aforementioned high accuracies indicate that the 
adopted models have low classification error rates for data set A. The three-class sorting results 
obtained for the images subjected to feature fusion were more favorable than those obtained for 
the original images or the images subjected to CLAHE processing only. The aforementioned 
result was obtained because the use of concatenated images resulted in the identification of a 
high number of image features and high image expressiveness, which allowed the extraction of 
sharp details and contour features by the adopted models. All the models exhibited an upward 

Table 2 
Model indicators of three-class deep learning for the original images.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%)
MobileNetV2 92.50 92.62 92.66 92.57 96.23
ResNet50 96.64 96.69 96.70 96.68 98.30
ResNet152V2 97.41 97.53 97.44 97.48 98.68
InceptionResNetV2 97.15 97.24 97.20 97.21 98.55
DenseNet121 97.15 97.25 97.20 97.21 98.55
DenseNet201 97.41 97.56 97.44 97.46 98.68
Xception 97.41 97.57 97.48 97.50 98.68

Table 3 
Model indicators of three-class deep learning for the CLAHE-processed images.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%)
MobileNetV2 92.76 92.84 92.81 92.82 96.35
ResNert50 96.64 96.63 96.73 96.66 98.32
ResNet152V2 96.39 96.46 96.48 96.46 98.17
InceptionResNetV2 95.60 95.63 95.73 95.68 97.78
DenseNet121 97.67 97.63 97.72 97.71 98.82
Denset201 96.89 96.95 96.95 98.43 98.68
Xception 97.41 97.49 97.41 97.45 98.68

Table 4 
Model indicators of three-class deep learning for the images subjected to feature fusion.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 score (%) Specificity (%)
MobileNetV2 98.19 98.20 98.25 98.20 99.09
ResNert50 98.96 98.94 99.00 98.97 99.48
ResNet152V2 98.44 98.48 98.41 98.41 99.21
InceptionResNetV2 98.70 98.76 98.72 98.74 99.34
DenseNet121 98.96 99.09 99.00 99.00 99.47
Denset201 98.70 98.72 98.75 98.73 99.34
Xception 99.74 99.75 99.75 99.75 99.86
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trend in the evaluation indicators following the application of the feature fusion method. The 
Xception model exhibited the best evaluation indicators. Its macro average precision increased 
by approximately 2% after feature fusion, which indicates that this model has a low likelihood of 
erroneously classifying images of healthy lungs or viral pneumonia as COVID-19. The Xception 
model’s macro average sensitivity increased by 2% after feature fusion, which indicates that it 
can accurately identify COVID-19 images. The macro average F1 score of the Xception model 
increased by 2% after feature fusion, which indicates that this model has high precision and 
sensitivity in COVID-19 detection. Moreover, the macro average specificity of the Xception 
model increased by 1% after feature fusion, which indicates that this model can accurately 
classify images that neither exhibit COVID-19 nor viral pneumonia.
 Figures 4 and 5 indicate that after feature fusion data and 30 epochs of training were 
employed, the accuracies of the validation and training sets were ≥97% for the Xception model. 
The loss functions of the validation and training sets decreased significantly with increasing 
number of epochs; thus, the Xception model approached convergence. The Xception model 
misclassified one CXR image of viral pneumonia as an image of healthy lungs (Fig. 6). However, 
it did not misclassify any images of viral pneumonia or COVID-19 as COVID-19 or healthy 
lungs, respectively. Thus, feature fusion data can improve the multiclass accuracy of models.
 The fivefold cross-validation of the model with the highest accuracy for data set A indicated 

Fig. 4. (Color online) Three-class accuracy of 
the Xception model for the feature fusion data.

Fig. 5. (Color online) Three-class loss 
function of the Xception model for the feature 
fusion data.

Fig. 6. (Color online) Three-class confusion matrix of the Xception model for the feature fusion data.
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that after the data were divided into five folds for cyclic evaluations, the accuracy of each 
evaluation was higher than 98% (Table 5). This result verifies that when using feature fusion 
data, the Xception model can accurately detect the conditions displayed in CXR images.

3.2 Results obtained for data set B

 As presented in Tables 6–8, high accuracy and sensitivity were achieved in two-class sorting 
when using the preprocessed original images as the input. When the feature fusion data were 
used, the sensitivity of most models reached 100%. A higher sensitivity indicates a lower 

Table 5 
Results of fivefold cross-validation for the three-class accuracy of the Xception model when using feature fusion 
data.

Indicator Fold
First Second Third Fourth Fifth Average

Accuracy (%) 98.83 99.35 99.35 99.48 98.96 99.1

Table 6 
Model indicators of two-class deep learning for the original images.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) Specificity (%)
MobileNetV2 98.70 97.50 98.31 97.90 98.88
ResNert50 98.19 96.66 97.47 97.07 98.50
ResNet152V2 98.19 95.90 98.31 97.09 98.13
InceptionResNetV2 99.48 98.34 100 99.16 99.25
DenseNet121 99.48 99.15 99.15 99.15 99.62
Denset201 98.71 97.50 98.32 97.90 98.88
Xception 98.70 98.30 97.47 97.89 99.25

Table 7 
Model indicators of two-class deep learning for the CLAHE-processed images.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) Specificity (%)
MobileNetV2 97.41 92.91 99.15 95.93 96.64
ResNert50 98.19 94.44 100 97.14 97.38
ResNet152V2 98.44 97.47 97.47 97.47 98.80
InceptionResNetV2 98.19 94.44 100 97.14 97.38
DenseNet121 98.96 97.52 99.16 98.33 98.80
Denset201 99.22 99.15 98.31 98.73 99.62
Xception 99.22 98.33 99.15 98.74 99.25

Table 8
Model indicators of two-class deep learning for the feature fusion data.
Modes Accuracy (%) Precision (%) Sensitivity (%) F1 Score (%) Specificity (%)
MobileNetV2 98.44 97.47 97.47 97.47 98.88
ResNert50 99.48 98.34 100 99.16 99.25
ResNet152V2 99.22 97.54 100 98.75 98.88
InceptionResNetV2 99.22 98.33 99.15 98.74 99.25
DenseNet121 99.48 98.34 100 99.16 99.25
Denset201 99.74 99.16 100 99.58 99.62
Xception 99.74 99.16 100 99.58 99.62
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Fig. 7. (Color online) Two-class accuracy of 
the Xception model for the feature fusion data.

Fig. 8. (Color online) Two-class loss of the 
Xception model for the feature fusion data.

possibility of a model misclassifying a COVID-19 image as a non-COVID-19 image; thus, a 
model with a higher sensitivity has a lower likelihood of misidentifying patients with COVID-19 
as having healthy lungs or viral pneumonia. The aforementioned finding indicates that the 
proposed image feature fusion technique can effectively increase the COVID-19 identification 
accuracy of a deep learning model.
 As depicted in Figs. 7 and 8, after 25 epochs of training with feature fusion data, the Xception 
model had validation and training accuracies higher than 98%. Furthermore, the validation and 
training losses of this model approached convergence. 
 As displayed in Fig. 9, the Xception model misclassified one non-COVID-19 CXR image as a 
COVID-19 image. However, this model did not misclassify any COVID-19 image as a non-
COVID-19 image. These results indicate that the proposed image feature fusion technique can 
effectively increase the COVID-19 identification accuracy of a deep learning model.
 The fivefold cross-validation of the model with the highest accuracy for data set B indicated 
that after the data were divided into five folds for cyclic evaluations, the accuracy of each 
evaluation was higher than 98% (Table 9). This result verifies that when using feature fusion 
data, the Xception model can accurately detect the conditions displayed in CXR images.

Fig. 9. (Color online) Two-class confusion matrix of the Xception model for the feature fusion data.
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3.3 Comparison of the results of this study with those of other studies

 Tables 10 and 11 show the COVID-19 identification accuracies obtained in the current study 
and other studies. Among the compared methods, the proposed method exhibits the highest two- 
and three-class accuracies. To avoid incidences of images not matching reality and ensure high 
model stability, data enhancement was not conducted in this study.

4. Conclusions

 A feature fusion technique is proposed in this paper. In this study, this technique was applied 
in the identification of COVID-19 in CXR images. The proposed technique was used in multiple 
deep learning models, which were then trained, validated, and compared. The proposed method 
involves image preprocessing, image processing, and feature fusion. The collected data were 

Table 9
Results of fivefold cross-validation for the two-class accuracy of the Xception model for the feature fusion data.

Indicator Fold
First Second Third Fourth Fifth Average

Accuracy (%) 99.22 99.61 99.87 99.48 99.35 99.50

Table 10 
Three-class accuracies obtained for CXR image classification in this study and other studies.
Study Method Accuracy (%)
Ferhat et al. COVIDiagnosis-Net(19) 98.26
Mesut et al. MobileNetV2+SqueezeNet+SVM(21) 99.27
Ozturk et al. DarkCovidNet(23) 87.02
Chowdhury et al. DenseNet201(24) 97.94
Anunay et al. InstaCovNet-19(27) 99.08
Apostolopoulos and Tzani MobileNetV2(18) 97.42
Khan et al. CoroNet(28) 95.02
Wang and Wong COVID-Net(29) 93.33
Bhadra and Kar Multi-layered CNN(30) 99.10
Ours Xception+Feature Fusion 99.74

Table 11
Two-class accuracies obtained for CXR image classification in this study and other studies.
Study Method Accuracy (%)
Minaee et al. SqueezeNet(20) 92.29
Ozturk et al. DarkCovidNet(23) 98.08
Chowdhury et al. DenseNet201(24) 99.70
Ohata et al. MobileNet+SVM(25) 98.62
Apostolopoulos and Tzani MobileNetV2(18) 96.78
Umri et al. VGG16(26) 97.50
Anunay et al. InstaCovNet-19(27) 99.53
Khan et al. CoroNet(28) 99.00
Ours Xception+Feature Fusion 99.74
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divided into three- and two-class sorting data for research. No additional data enhancement 
techniques were used; therefore, the processed images matched reality. In three-class sorting, 
the Xception model achieved the following results when using feature fusion data: accuracy = 
99.74%, precision = 99.75%, sensitivity = 99.75%, F1 score = 99.58%, and specificity = 99.62%. 
The average fivefold cross-validation accuracy of this model was 99.50%. The aforementioned 
results verify that the proposed feature fusion technique can improve the performance of deep 
learning models in identifying COVID-19 in CXR images.
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