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	 In clinical practice, electrocardiography is used to diagnose cardiac abnormalities. Because 
of the extended time required to monitor electrocardiographic signals, the necessity of 
interpretation by physicians, and the vulnerability of electrocardiographic signals to noise 
interference, electrocardiography is laborious and places a heavy burden on healthcare providers. 
Therefore, in this paper, a convolutional Takagi–Sugeno–Kang (TSK)-type fuzzy neural 
network (CTFNN) is proposed to address the challenges of arrhythmia signal classification. The 
proposed CTFNN is divided into three parts, namely, a convolutional layer, a feature fusion 
layer, and a TSK fuzzy neural network. The TSK fuzzy neural network is used to replace the 
fully connected neural network, thereby reducing the number of parameters and enabling the 
model to mimic the human brain when classifying signals. In addition, because the parameters 
of the CTFNN are difficult to determine, the uniform experimental design method, which 
requires only a small number of experiments, is used to determine the optimal parameter 
combination. The proposed model was tested using the Massachusetts Institute of Technology-
Beth Israel Hospital (MIT-BIH) arrhythmia database, which contains 1000 records belonging to 
17 categories. Each record has a duration of 10 s and contains 3600 sampling points. According 
to our experimental results, the accuracy, recall, precision, and F1-score of the CTFNN for long-
term signals were 97.33, 97.96, 96.00, and 96.97%, respectively. In addition, the number of 
parameters for the proposed model was only 558,728, which was less than that for LeNet (i.e., 
1734501).

1.	 Introduction

	 According to the World Health Organization, heart disease is the leading cause of death 
worldwide. Since 2000, among the deaths caused by various factors, the deaths caused by heart 
disease have exhibited the highest increase. Heart disease kills 17.9 million people worldwide 
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every year. The typical resting heart rate for an adult is 60–100 beats per minute. Arrhythmia is 
an alteration in the rhythm of the heartbeat that might result from the delay or blockage of the 
electrical signal that controls the heartbeat or from the failure of the sinoatrial node to function 
normally. Although most arrhythmias are benign and not life-threatening, malignant 
arrhythmias are likely to be a manifestation of heart disease or stroke. Ventricular tachycardia 
and fibrillation are extremely dangerous arrhythmias that can lead to the sudden death of the 
patient. At present, the clinical diagnosis of arrhythmia involves listening to heartbeats and chest 
palpitations, general 12-lead electrocardiography (ECG), and electrophysiology. ECG is 
preferred over electrophysiology because the latter is invasive. Occasionally, a patient’s heart 
rate may be monitored continuously for periods of 24 h to 14 days by using a small battery-
powered electrocardiogram device attached to the body.
	 Researchers have applied machine learning approaches to medical imaging and biomedical 
monitoring for diagnostic analysis. Kumari et al.(1) used discrete wavelet transform to extract 
signal features from ECG samples. Support vector machine(2) was used to classify normal sinus 
rhythm, congestive heart failure, and cardiac arrhythmia. Zou et al.(3) used random forest to 
classify ECG signals from a heart rate sensor. They proposed using discriminative labels to 
extract long-period signal features, which can provide the contextual information of specific 
heartbeats to improve the performance of heartbeat classifiers. Yang and Wei(4) proposed a 
visual morphological model for analyzing the Q-, R-, and S-wave (QRS) complexes according to 
ECG morphology and used the K-nearest neighbor algorithm to classify six heartbeat types. 
Conventional machine learning involves using large data sets to identify patterns and make 
predictions about future data points. The aforementioned methods require the manual selection 
of signal features, which is labor-intensive. For convenience, deep learning methods have been 
developed to allow models to extract these features automatically.
	 Several researchers have used deep learning methods for the identification of arrhythmia. 
Convolutional neural networks (CNNs) are widely used network architectures. Wu et al.(5) aimed 
to analyze short-term, single-lead ECG signals by time–frequency transformation to obtain the 
signal distribution matrix. They used a CNN to classify 12 arrhythmias and evaluated the 
performance of three time–frequency transformation methods in this classification. Mahmud et 
al.(6) proposed a novel deep CNN architecture that uses pointwise–temporal–pointwise 
convolutional structural units with different temporal orders. They used residuals combined with 
features at different time points for arrhythmia classification. Zhang et al.(7) proposed the 
ECGNet architecture to improve the diagnostic accuracy of premature ventricular complexes in 
small data sets with imbalanced samples. They used convolution kernels of different sizes and a 
new loss function to improve the classification performance of ECGNet on ECG images. 
Because most CNN models use multiple convolutional and pooling layers to extract feature 
weights or reduce dimensions before finally performing classification through fully connected 
layer calculations, two difficulties occur. First, the fully connected layer is similar to a black 
box, and the weighted value has no physical meaning. Second, users often determine model 
parameters through trial and error, which leads to an increase in experimental cost.
	 Fuzzy logic mimics human brain reasoning and is often used to describe the correlation 
between input and output. Zadeh(8) proposed the concept of fuzzy sets, which is different from 
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the binary system commonly used in general mathematics. The binary system, which uses only 
zeros and ones, does not allow any ambiguity. The fuzzy set calculates the membership degree 
through the membership function and quantifies and infers the fuzzy set and rules. Jang(9) 

combined fuzzy logic and a neural network approach to develop an adaptive network-based 
fuzzy inference system architecture that can automatically determine the parameters of fuzzy 
if–then rules through gradient learning. Wu et al.(10) used a three-dimensional CNN model to 
extract features and adopted a fuzzy min–max neural network as a classifier for open action 
recognition. Boreiri et al.(11) used the fuzzy two-stage color segmentation algorithm for image 
preprocessing and proposed the CNN of the Takagi–Sugeno–Kang (TSK)-type fuzzy model to 
detect acute lymphoblastic leukemia. Du et al.(12) proposed a TSK-type convolutional recurrent 
fuzzy network to predict driver fatigue in EEG signals.
	 Because CNN model parameters are often determined through trial and error, the cost of 
experiments is high. In engineering, the Taguchi(13–15) and uniform experimental design 
(UED)(16–18) methods are often used to optimize experimental parameters and increase 
efficiency. In this study, UED was applied for parameter selection.
	 In this paper, we propose a convolutional TSK-type fuzzy neural network (CTFNN) for 
arrhythmia signal classification. The main contributions of this study are as follows:
•	 A CTFNN, which combines a CNN and TSK-type fuzzy neural network, is proposed to 

address the shortcomings of deep learning networks in arrhythmia classification.
•	 A feature fusion layer with global max pooling is proposed for feature extraction.
•	 The UED method is applied to optimize parameter selection in the proposed CTFNN model.
•	 Experimental results indicated that the accuracy, recall, precision, and F1-score of the 

proposed CTFNN for long-term ECG signals were 97.33, 97.96, 96.00, and 96.97%, 
respectively.

•	 The proposed CTFNN model had only 558,728 parameters, whereas the LeNet model had 
1734501 parameters.

	 The rest of this paper is organized as follows. Section 2 provides a detailed introduction of the 
UED method and CTFNN model. Section 3 presents the experimental results obtained using the 
CTFNN on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) 
arrhythmia data set. Section 4 provides the conclusions of this study and recommendations for 
future research.

2.	 Materials and Methods

	 In this paper, we propose an arrhythmia classification system that combines UED and a 
CTFNN and uses long-term ECG signals. UED, which is efficient, is used to determine the 
parameters of the network, and a TSK-type fuzzy neural network (TFNN) is used to replace the 
fully connected network for reducing the number of parameters. A flow chart of the proposed 
system architecture is shown in Fig. 1.
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2.1	 Uniform experimental design

	 UED is an application of the quasi-Monte Carlo method based on the theory of numbers.(16) 
UED only considers the uniform dispersion of test points within the test range, and each test 
point is representative. UED requires fewer experiments than does the Taguchi method when the 
same numbers of factors and levels are used, which makes it more suitable than the Taguchi 
method for multifactor and multilevel models or in situations where the model is completely 
unknown. However, if the number of experiments is insufficient, the network model is unable to 
provide accurate results. The UED table is usually represented by Un(qs), where n represents the 
number of experiments, q is the number of levels, and s is the number of factors.
	 First, the problem to be solved is defined. Second, the experimental factors and their levels 
and the number of experiments are determined. The number of experiments must be at least 
twice the number of factors; otherwise, an effective model might not be established. An initial 
UED table is designed according to the selected factors and levels. On the basis of the 
congruence theorem, the structure of the UED table is calculated using its jth row and ⅈth 
column as 

	 [ ]i  iju j mod n= × .	 (1)

Fig. 1.	 System architecture.
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	 The good lattice point method evenly distributes representative points to create a UED table. 
Third, the established uniform table is used in conjunction with its UED table. In the table used, 
the number of rows indicates that the row has a higher uniformity and a smaller deviation. The 
centered L2-discrepancy is used to assess whether UED tables have uniform dispersion. Fourth, 
experiments are conducted according to the configured UED table, and the experimental results 
are recorded. Finally, multiple regression analysis is conducted using the following formula:

	
1

2 3
0 1 2 3 4

1 1 1 1 1

[ ]
f f f f f

i i i i i i ij i j
i i i i j i

Yε α α β α β α β α β β
−

= = = = = +

= − + + + +∑ ∑ ∑ ∑∑ ,	 (2)

where ε represents the error, Y represents the actual output, α0 represents a constant, α1i, α2i, α3i, 
and α4i are regression coefficients, and βi is a factor. The parameter combination improves when 
ε becomes closer to zero. The optimum parameter combination is identified and verified. If the 
experimental results are not as expected, the experiment must be redesigned.

2.2	 Convolutional TFNN

	 The proposed CTFNN model, which is a combination of a CNN and TFNN, is used as a 
classifier. The CTFNN contains four layers: an input layer, a three-layer convolution layer, a 
feature fusion layer, and a TFNN layer. The TFNN contains four types of node, namely, 
fuzzification, rule, consequent, and output nodes. The architecture of the CTFNN model is 
described in the following paragraphs and illustrated in Fig. 2.

Fig. 2.	 (Color online) Proposed CTFNN architecture.
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(1)	Input layer
	 The network input is added to the input layer. In this study, one-dimensional ECG signals 
with a duration of 10 s and 3600 sampling points were used as input (Fig. 3; denoted as xi).

(2)	Convolutional layer
	 The convolutional layer slides the input signal through a convolution kernel. Three 
convolutional layer operations are performed to extract features, and the convolution operation is 
expressed as

	 [ ] [ ] [ ]
1

1

* ,
ks

k

y f x i k s w f k
−

=

= + +∑ ,	 (3)

where y[ f ] represents the output feature map and quantity, k is the index of the convolution 
kernel, ks is the size of the convolution kernel, and w[ f, k] is the convolution kernel.

(3)	Feature fusion layer
	 Features are fused in the feature fusion layer. In the global max pooling operation, the 
convolutional layer’s output is used to perform feature fusion and reduce the dimensionality of 
the feature map. The global max pooling operation is defined as

	 [ ] [ ]( )MaxGMPy f y f= ,	 (4)

where y[ f ] represents the size of feature maps in the convolutional layer’s output.

(4)	TFNN
	 A TFNN, which is widely used in many fields, requires only a few fuzzy rules to solve 
complex nonlinear problems.(19–21) The TFNN architecture used in this study uses four types of 
node: fuzzification, rule, consequent, and output nodes. The fuzzy rules of the TFNN are 
expressed as

Fig. 3.	 (Color online) Example of an ECG signal.
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1 1 2 2   : IF is  and  is  and  and  is  and  is j j j i ij n njR x A x A x A x A 

	 ( ) 0 1 1 2 2THEN ,            j j j j ij i nj ny x c c x c x c x c x= + + + + + 

where Rj is the jth fuzzy rule, x1, x2, ..., xn is the input, Aij is the fuzzy set, and cij is the parameter 
of the consequent.

•	 Fuzzification node
	 The fuzzy membership function is used in a fuzzy operation. The input signal is converted to 
a value between 0 and 1. In this study, a Gaussian membership function was used. This function 
is expressed as

	 ( ) ( )
2

1 1exp   
2

i ij
ij ij i

ij

x m
o xµ

σ

  − = = −      
,	 (5)

where mij is the mean and σij is the deviation.

•	 Rule node
	 If the degree of membership of the input xi is μij(xi), the firing strength of each rule is 
expressed as

	 ( ) ( ) ( )2 1

1

 , 1, 2,...,
r

j j ij
j

o x o j rµ
=

= = =∏ ,	 (6)

where r is the number of fuzzy rules.

•	 Consequent node
	 In this study, we adopted a TSK-type fuzzy rule, which is expressed as

	 ( ) ( )3 2
0

1
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j j j ij i
i

o o c c x
=

 
= + 

 
∑ ,	 (7)

where n is the input dimension.

•	 Output node
	 This node completes the defuzzification operation and converts a fuzzy value into a crisp 
value. This operation is expressed as
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3.	 Experimental Results

	 To evaluate the effectiveness of the proposed CTFNN model, experiments were performed 
using the MIT-BIH arrhythmia database.(22) First, the MIT-BIH arrhythmia database is 
introduced. Subsequently, the use of UED to optimize the CTFNN parameters as well as the 
experimental results and related experimental parameter configurations are described. Finally, 
the optimized architecture of the CTFNN is discussed.

3.1	 Data set

	 The data set used in this experiment is the MIT-BIH arrhythmia database, which contains 
data from 47 patients, including 48 half-hour, dual-channel ECG signals from a heart rate sensor. 
Abnormal heart rhythm signals account for approximately 30% of all the signals, which are 
divided into 17 categories, including normal heart rhythm and abnormal signals. For measuring 
cardiac activity, only modified lead II records were used in this study. Because record numbers 
102 and 104 did not use modified lead II records, data from only 45 patient records were used. 
Each ECG signal is 10 s long and contains 3600 sampling points for signal segmentation. A total 
of 1000 records were used in the experiment. The ratio of training data to validation data to test 
data was 70:15:15. The details of each signal category are presented in Table 1.

Table 1
Information on signal categories of MIT-BIH arrhythmia database.
No. Classification Symbol Train Val Test Total

1 Normal sinus rhythm NSR 200 47 36 283
2 Atrial premature beat APB 44 10 12 66
3 Atrial flutter AFL 13 3 4 20
4 Atrial fibrillation AFIB 96 21 18 135
5 Supraventricular tachyarrhythmia SVTA 9 2 2 13
6 Pre-excitation WPW 15 4 2 21
7 Premature ventricular contraction PVC 98 19 16 133
8 Ventricular bigeminy Bigeminy 38 8 9 55
9 Ventricular trigeminy Trigeminy 10 2 1 13

10 Ventricular tachycardia VT 7 1 2 10
11 Idioventricular rhythm IVR 7 2 1 10
12 Ventricular flutter VFL 6 1 3 10
13 Fusion of ventricular and normal beat Fusion 7 3 1 11
14 Left bundle branch block beat LBBBB 73 11 19 103
15 Right bundle branch block beat RBBBB 45 8 9 62
16 Second-degree heart block SDHB 6 3 1 10
17 Pacemaker rhythm PR 26 4 14 45

Total 700 150 150 1000
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3.2	 Experimental results obtained using CTFNN with UED

	 UED was used to select the optimal parameter combination. A total of 10 affecting factors 
were selected, including kernel size, the number of filters, the stride of the three convolutional 
layers, and the number of rule nodes in the TFNN. Three 4-level factors, four 3-level factors, and 
three 2-level factors were selected. To achieve effective uniformity, the number of experiments 
must be greater than twice the number of factors. Therefore, we conducted 21 experiments. The 
factors and levels of UED are presented in Table 2.
	 Next, according to the level number of the selected factor and the number of experiments, the 
corresponding initial UED table was designed and is shown in Table 3.
	 According to the initial UED table, the good lattice point method was used to establish a 
UED table and conduct experiments with this table. To improve reliability, each parameter 
combination was tested three times, and the average accuracy was calculated. The experimental 
results are presented in Table 4.
	 Multiple regression analysis was performed on the experimental results to obtain the optimal 
experimental parameters. Table 5 shows the optimal parameters of the proposed CTFNN model 
as selected using the UED method. The optimal experimental parameters for convolutional layer 
1 are eight filters, a kernel size of 120, and a stride of 1; those for convolutional layer 2 are 64 
filters, a kernel size of 30, and a stride of 1; those for convolutional layer 3 are 256 filters, a 
kernel size of 30, and a stride of 1; and the optimal parameter for the TFNN is 64 rule nodes.

3.3	 Model analysis and discussion

	 To evaluate the performance of the CTFNN model, four evaluation indicators were used, 
namely, accuracy, recall, precision, and F1-score. The formulas for these indicators are 

	 TP TNAccuracy
TP FP TN FN

+
=

+ + +
,	 (9)

Table 2
Factors and levels of UED.
No. Affecting factors Level 1 Level 2 Level 3 Level 4
A

Convolution layer 1
Filter 8 16 32 64

B Kernel size 30 60 120 –
C Stride 1 2 – –
D

Convolution layer 2
Filter 16 32 64 128

E Kernel size 15 30 60 –
F Stride 1 2 – –
G

Convolution layer 3
Filter 32 64 128 256

H Kernel size 15 30 60 –
I Stride 1 2 – –
J TFNN Rule node 32 64 128 –
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Table 4
UED table and experimental results.
No. A B C D E F G H I J Y1 Y2 Y3 Yavg
1 8 120 1 64 30 2 64 30 1 32 0.9467 0.9800 0.9733 0.9667
2 16 30 2 128 60 1 128 30 1 64 0.9733 0.9599 0.9666 0.9666
3 32 120 1 32 15 2 256 60 1 32 0.9666 0.9733 0.9599 0.9666
4 64 120 2 32 60 1 32 60 1 32 0.9133 0.9200 0.9200 0.9178
5 8 60 2 32 60 2 32 15 2 128 0.9399 0.9200 0.9400 0.9333
6 16 60 1 16 60 2 64 60 1 64 0.9666 0.9467 0.9533 0.9555
7 32 30 1 128 15 2 256 15 2 64 0.9266 0.9266 0.9200 0.9244
8 64 60 2 128 30 1 64 15 1 64 0.9466 0.9399 0.9533 0.9466
9 8 60 1 128 30 2 128 15 1 128 0.9399 0.9266 0.9466 0.9377

10 16 120 1 64 15 1 64 60 2 64 0.9666 0.9666 0.9533 0.9622
11 32 30 1 128 30 1 128 60 1 128 0.9533 0.9466 0.9599 0.9533
12 64 60 1 32 30 2 128 30 1 128 0.9599 0.9599 0.9266 0.9488
13 8 30 2 16 15 1 256 15 1 64 0.9133 0.9266 0.9333 0.9244
14 16 60 2 16 15 2 32 15 2 32 0.9066 0.8600 0.9200 0.8955
15 32 120 2 16 15 1 256 60 2 32 0.9599 0.9733 0.9666 0.9666
16 64 120 1 16 30 1 256 30 2 128 0.9666 0.9733 0.9599 0.9666
17 8 120 2 32 60 1 32 30 2 32 0.9533 0.9466 0.9200 0.9400
18 16 30 1 64 60 2 32 30 2 128 0.9333 0.9066 0.8866 0.9088
19 32 60 2 64 30 2 64 15 2 64 0.9200 0.9399 0.9533 0.9377
20 64 30 1 16 60 1 32 60 2 32 0.8666 0.9266 0.9066 0.8999
21 8 30 2 64 15 1 32 30 1 32 0.9399 0.9133 0.9266 0.9266

Table 3
Initial UED table.
No. A B C D E F G H I J

1 1 9 11 9 2 3 18 18 7 8
2 2 19 14 13 17 21 15 6 14 9
3 3 3 9 8 19 7 4 3 11 17
4 4 12 18 19 12 14 5 21 12 3
5 5 11 4 2 15 12 17 8 3 20
6 6 14 5 21 10 2 10 5 21 12
7 7 1 7 11 6 16 16 9 19 2
8 8 20 20 12 7 4 6 10 5 19
9 9 2 17 4 9 20 11 17 2 13

10 10 18 3 3 5 9 2 15 15 5
11 11 7 21 17 20 10 19 16 18 14
12 12 8 1 15 14 18 7 2 6 6
13 13 16 16 5 1 13 12 1 17 15
14 14 17 10 16 18 5 13 13 1 1
15 15 15 8 20 4 19 20 12 10 18
16 16 6 15 1 16 1 8 11 16 7
17 17 21 6 7 21 15 9 19 8 11
18 18 4 13 18 3 11 1 7 4 10
19 19 5 2 14 8 6 14 20 13 16
20 20 13 19 6 11 8 21 4 9 4
21 21 10 12 10 13 17 13 14 20 21
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where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. 
Figure 4 illustrates the confusion matrix of the CTFNN model. The proposed method was 
applied in the classification of 17 types of heart arrhythmia signal. A total of 14 types of heart 
arrhythmia signal were classified with an accuracy rate of 100%. The accuracy rates for the 
classification of the SDHB, PVC, and NSR arrhythmia signals (the remaining three signal types) 
were 91.67, 88.89, and 81.25%, respectively.
	 The performance of the CTFNN model was evaluated by comparing it with those of several 
widely used deep learning networks, such as LeNet,(23) AlexNet,(24) GoogLeNet,(25) ResNet18,(26) 
and T-CNFN.(27) Li et al.(27) used T-CNFN for the detection of arrhythmia. T-CNFN combines 
the Taguchi method and a convolutional neuro-fuzzy network. In T-CNFN, they adopted 
Mamdani-type fuzzy inference systems. The corresponding experimental results are presented 
in Table 6. The accuracy, recall, precision, and F1-score of the CTFNN were 97.33, 97.96, 96.00, 
and 96.97%, respectively, and the CTFNN achieved higher performance than did the other deep 
learning networks. In addition, because the CTFNN uses a TFNN instead of a fully connected 
neural network in the classifier, the number of parameters for the CTFNN was only 558728 
(Table 6), which was less than those for LeNet, AlexNet, GoogLeNet, and ResNet18. CTFNN 
had more parameters than did T-CNFN but achieved higher accuracy, recall, precision, and F1-
score than did T-CNFN.
	 In this study, we also compared the CTFNN with other conventional machine learning and 
deep learning methods by using the MIT-BIH arrhythmia database, and the corresponding 
experimental results are presented in Table 7. Oh et al.(30) proposed a CNN combined with a long 
short-term memory network that achieved an accuracy of 98.1%; however, they only categorized 

Table 5
Optimal experimental parameters for CTFNN model.
No. Layer Input Filter Kernel size Stride Rule Activation
1 Input layer 3600 – – – – –
2 Convolution layer 1 – 8 120 1 – ReLU
3 Convolution layer 2 – 64 30 1 – ReLU
4 Convolution layer 3 – 256 30 1 – ReLU
5 Feature fusion layer – 256 – – – –
6 Rule node – – – – 64 –
7 Output node – – – 17 softmax
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Fig. 4.	 (Color online) Confusion matrix of CTFNN model.

Table 6
Performance comparison of several deep learning networks.
Method Accuracy (%) Recall (%) Precision (%) F1-score (%) Total parameters
LeNet(23) 30.67 32.17 30.67 31.40 1734501
AlexNet(24) 63.33 64.83 62.67 63.73 16233489
GoogLeNet(25) 77.33 80.88 73.33 76.92 21650217
ResNet18(26) 91.33 91.89 90.67 91.28 3867025
T-CNFN(27) 93.95 96.03 93.47 94.30 274657
Proposed method 97.33 97.96 96.00 96.97 558728

Table 7
Performance comparison of several conventional machine learning and deep learning methods.
Method Length of signal No. of classes Classifier Accuracy (%)

Pławiak(31) 3600 samples (10 s)
13 Evolutionary-neural system

(based on support vector 
machine)

94.60
15 91.28
17 90.20

Acharya et al.(29) 360 samples (1 s) 5 CNN 94.03
Zubair et al.(32) 360 samples (1 s) 5 CNN 92.7
Mahmud et al.(33) 360 samples (1 s) 5 CNN and Inception 97.3
Oh et al.(30) Variable length 5 CNN and LSTM 98.10

Yildirim et al.(28) 3600 samples (10 s)
13

CNN
95.20

15 92.51
17 91.33

Li et al.(27) 3600 samples (10 s) 17 T-CNFN 93.95
Proposed method 3600 samples (10 s) 17 CTFNN 97.33
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five arrhythmias. Among the four models in Table 7 adopted for classifying 17 arrhythmia 
categories by using long-term (10 s) signal samples,(27,28,31) the CTFNN had the highest accuracy 
(97.33%). The other three models had accuracies of 90.20, 91.33, and 93.95%.(27,28,31)

4.	 Conclusions

	 In this paper, a CTFNN model is proposed for solving the problems faced in arrhythmia 
signal classification. The CTFNN is a combination of a CNN and TFNN. A TFNN is used 
instead of a fully connected neural network, which reduces the number of parameters and 
enables the model to mimic the human brain when classifying signals. The UED method is used 
to find the optimal parameter combination through a small number of experiments. The CTFNN 
was applied in the classification of 17 types of heart arrhythmia signal originating from heart 
rate sensors. The accuracy, recall, precision, and F1-score of the proposed CTFNN model for 
long-term signals were 97.33, 97.96, 96.00, and 96.97%, respectively, according to our 
experiments. The CTFNN outperformed several other methods. In addition, the number of 
parameters for the CTFNN was 558728, which was less than that for the LeNet model (i.e., 
1,734,501). This network also classified 14 types of heart arrhythmia signal with an accuracy of 
100%.
	 The accuracy rates of the CTFNN for the classification of the SDHB, PVC, and NSR 
arrhythmia signals (the remaining three types of signal) were 91.67, 88.89, and 81.25%, 
respectively. The number of arrhythmia signals in these three categories is small; therefore, 
obtaining their characteristics during learning is difficult. Consequently, in future research, we 
will introduce a generative adversarial network into the ECG signal classification model.(34) 
Unbalanced arrhythmia signals can be used for data augmentation to improve the classification 
ability of the model. In addition, future studies can combine the CTFNN with a hardware 
implementation for the real-time detection and display of heart rhythm.
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