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 Muscle–computer interfaces are devices that can identify the meaning of human bioelectrical 
signals, such as surface electromyography (sEMG) signals. sEMG signals can be obtained from 
arm-worn sensors and can be used to classify human gestures. In this paper, we propose a 
vector–kernel convolutional Takagi–Sugeno–Kang (TSK)-type neuro-fuzzy classifier (VK-
CTNFC) to recognize human gestures represented by sEMG signals. First, vector–kernel 
convolution is used to extract the features of sEMG signals; this modification reduces the model 
parameters by half and increases the classification accuracy compared with those achieved with 
a conventional convolutional kernel. Second, the global average pooling method is used instead 
of the flattening method to improve feature fusion performance. Finally, a TSK-type neuro-
fuzzy network is used for gesture classification. The publicly available dataset Ninapro DB1 was 
used in experiments for verifying the performance of the proposed VK-CTNFC. Data 
preprocessing was performed by wavelet denoising to smooth the sEMG waveform, and fast 
Fourier transform was used to convert time-domain sEMG signals into frequency-domain 
signals. Finally, the processed sEMG signals were input into the VK-CTNFC for training. The 
experimental results indicate that the proposed VK-CTNFC has an average accuracy of 87.18% 
and outperforms other reported methods.

1. Introduction

 Human–computer interfaces (HCIs) are devices that enable users to control electronic 
devices interactively by using physical sensors, such as a mouse, keyboard, button, or touch 
surface. Although these physical sensors can provide efficient and accurate communication 
between the user and the device, the sensors must be within the user’s reach. Therefore, they are 
inconvenient in some applications.
 A muscle–computer interface (MCI) is a device that detects and decodes human muscle 
activity for interaction with a computer. Muscle signal sensors are worn on a human muscle and 
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obtain signals when the muscle moves. The instructions represented by the signal are decoded 
and sent to the computer to achieve a task. Current applications of MCIs include muscle fatigue 
tracking,(1) electric wheelchair control,(2) vehicle-mounted device control solutions,(3) and sign 
language recognition.(4)

 Approximately 541000 Americans were estimated to suffer from an upper extremity injury 
of any degree in 2005; this number is expected to double by 2025.(5) The main reasons for these 
injuries are trauma, followed by tumors or infectious diseases.(6) Patients with hand disabilities 
have reduced the ability to live independently; however, prosthetics can often improve their 
function. For example, patients with hand disabilities cannot use conventional physical HCI 
sensors, such as a mouse or buttons. Instead, patient muscle signals can be collected to identify 
an instruction to an electronic system. Prosthetic control is a commonly investigated application 
of MCI.(7–10) Surface electromyography (sEMG) signals are well suited for this application. 
Because an sEMG signal sensor is noninvasive (requiring only skin contact), such a sensor is 
suitable for long-term wearing.
 Some researchers have used artificial intelligence methods to recognize human gestures 
represented in sEMG signals. Common artificial intelligence methods can be divided into 
conventional machine learning and deep learning methods. In machine learning, features in a 
dataset must be identified before producing a model. Phinyomark and Scheme(11) and 
Phinyomark et al.(12) used time- and frequency-domain features of EMG signals, respectively, as 
features of training data. Atzori et al.(13) used the K-nearest neighbor (KNN), support vector 
machine (SVM), random forest, and latent Dirichlet allocation (LDA) classifiers to classify five 
EMG data features. Shenoy et al.(14) used linear SVM to classify eight gestures that enabled 
controlling a robotic arm with four degrees of freedom. Waris et al.(15) conducted machine 
learning experiments on ten able-bodied and six transradial amputees for seven consecutive 
days, and compared the classification results of LDA, artificial neural network (ANN), SVM, 
KNN, and decision trees; ANN had the highest classification accuracy. Conventional machine 
learning methods have some limitations; features must be manually selected for each problem by 
an expert with relevant professional knowledge. This process is tedious and might be 
insufficiently accurate; thus, testing different feature sets is challenging. Moreover, the feature 
classifier must be optimally selected for the corresponding classification task to obtain the best 
classification results.
 Researchers have also used deep learning in MCI systems. Atzori et al.(16) used a modified 
LeNet model for prosthetic action classification. Wei et al.(17) used a multistream convolutional 
neural network (CNN) to divide sEMG input signals into multiple equal-sized signal streams; a 
CNN was trained on these signals to obtain features, and these features were fused to achieve 
gesture recognition. Olsson et al.(18) used the CNN topology to optimize the number of 
convolutional layers, kernel size, and the number of kernels. CNNs using simple architectures 
achieve similar accuracy to conventional machine learning classification methods.(16) Because 
deep learning methods can automatically extract key features in input data to improve 
classification accuracy, deep learning methods have been widely used in recent years.(19)

 CNNs are effective not only for image classification problems(20–22) but also for extracting 
the spatial features of channels in sEMG signal maps. However, conventional CNNs have 
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numerous parameters, resulting in a high computational cost of model training and an 
unacceptable delay in obtaining results for real-time tasks. A vector–kernel CNN(23) was used to 
replace the convolution operation in a conventional CNN by reducing the number of parameters. 
In conventional CNNs, flattening is first conducted to expand the features before they are input 
to the classifier. Various effective feature fusion methods are often used to reduce the number of 
neurons.(24) Fully connected neural networks (FCNNs) are often used as classifiers in 
conventional CNNs. Because FCNNs are black boxes with numerous parameters, neuro-fuzzy 
networks have been proposed as a replacement for FCNNs.(25)

 In this paper, we propose a vector–kernel convolutional Takagi–Sugeno–Kang (TSK)-type 
neuro-fuzzy classifier (VK-CTNFC) to classify human hand poses from sEMG signals. The 
main contributions of this study are as follows:
1. An effective VK-CTNFC model that combines vector–kernel convolution and a TSK-type 

neuro-fuzzy network (TNFN) is proposed for classifying hand poses from sEMG signals.
2. Global average pooling (GAP) is used to fuse data features in the fusion layer of the VK-

CTNFC.
3. A TNFN is used to replace an FCNN in the traditional CNN architecture, which considerably 

reduces the number of training parameters. Compared with other models, the proposed VK-
CTNFC has not only fewer parameters but also higher accuracy.

 The remainder of this paper is organized as follows. Section 2 presents the system flowchart 
and the structure of the proposed VK-CTNFC. Section 3 describes the experimental results 
obtained for the proposed VK-CTNFC models. Finally, Sect. 4 provides the conclusions of this 
study and recommendations for future research.

2. Materials and Methods

 The flowchart of the overall proposed system is depicted in Fig. 1. First, the sEMG signal of 
the gesture is preprocessed by wavelet denoising (WD) and fast Fourier transform (FFT). 
Second, the preprocessed signals are input into the proposed VK-CTNFC for gesture recognition 
and classification. Finally, the represented gesture is output.

2.1 Signal preprocessing

 During sEMG signal collection, key features in the signals are unclear because of the effects 
of factors such as noise. WD and FFT, which are two data preprocessing techniques, are used to 
reduce the interference of these factors and translate the sEMG signal into the frequency domain, 
respectively. Figure 2 presents a flowchart of the signal preprocessing method.
1) Wavelet Denoising: WD(26) is based on wavelet transform. First, the time series of each 

channel of an sEMG signal is decomposed by continuous wavelet transform (CWT) to obtain 
wavelet coefficients. CWT, which is the product of the time series x(t) and ψa,b(t), is defined 
as 
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where x(t) is the input signal and ψ is the mother wavelet, which contains a (a ≠ 0) and b. The 
parameters a and b represent dilation and translation, respectively. The wavelet ψ is defined 
as 
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After the wavelet coefficient w is obtained, an appropriate threshold T is set as the wavelet 
coefficient. All wavelet coefficients below the threshold T are set as 0. A soft threshold 
function is used, and this function is defined as 
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Finally, the wavelet signal is reconstructed to obtain the noise-free signal.

Fig. 2. (Color online) Signal preprocessing method.

Fig. 1. (Color online) Flowchart of overall proposed system.
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2) Fast Fourier Transform: FFT is based on discrete Fourier transform (DFT) and characterized 
by its exploitation of the symmetric property of complex multiplication in a complex plane. In 
FFT, multiple multiplications with symmetric properties are combined into a single term to 
reduce computation. The structure of the original mathematical model is unchanged; thus, 
FFT achieves the same calculation result as DFT does but more rapidly. DFT is defined as

 ( ) ( )
1

0

,2 1, , .exp 0, 1
N

n

nkD k d n i k N
N

−

=

 = π = 
−


−∑   (4)

After WD, FFT is used to convert an sEMG signal represented in the time domain into a 
frequency-domain representation.

2.2 Proposed VK-CTNFC

 The architecture of the proposed VK-CTNFC is shown in Fig. 3. This classifier contains an 
input layer, a feature extraction layer, a feature fusion layer, a fuzzification layer, a rule layer, a 
consequent layer, and an output layer. The goal of the VK-CTNFC is to classify an input sEMG 
signal as the intended gesture.
1) Input Layer: The input signal of the input layer is represented by I and expressed as 
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where F and C represent the length and the number of channels of the input signal, 
respectively.

2) Feature Extraction Layer: The feature extraction approach of the proposed method involves 
the use of the vector–kernel convolution operation to reduce the number of network 
parameters. Figure 4(a) illustrates the original k × k convolution operation. Figure 4(b) shows 

Fig. 3. (Color online) Architecture of proposed VK-CTNFC.
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the use of two vector–kernel convolution operations (k × 1 and 1 × k) that are equivalent to 
the original convolution operation.

 The vector–kernel convolution operation is defined as 

 .
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N
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where Ii is the input matrix of the convolution, N is the number of feature maps, Kij is the jth 
kernel matrix of the ith layer, and Bj is the bias. Finally, a nonlinear activation function is 
applied to each element to produce the output feature map matrix yconv. The size no of the 
output feature map matrix yconv is calculated as 
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where ni is the size of the input matrix, p is the padding size, k is the kernel size, and s is the 
stride length.

3) Feature Fusion Layer: A commonly used operation in feature fusion layers is the global 
pooling operation. In the feature fusion layer of the proposed VK-CTNFC, GAP and global 
max pooling (GMP) are used to compress and reduce the dimension of the feature map, as 
shown in Fig. 5.

a) Global average pooling: GAP involves the averaging of each feature map output by the 
convolutional layer. In GAP, the output size is 1 × f. GAP is defined as 

 [ ] [ ] [ ]( )fusion GAP convy f y f Avg y f= = .  (8)

b) Global max pooling: GMP involves the identification of the maximum value of each feature 
map output by the convolutional layer. In GMP, the output size is 1 × f. GMP is defined as 

Fig. 4. (Color online) (a) Original k × k convolution operation. (b) Two vector–kernel convolution operations (k × 1 
and 1 × k) equivalent to the original convolution operation.

(a) (b)
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4) Fuzzification Layer: Fuzzy rules are formulated as if–then statements and can be expressed as 

 ( )1 1 2 2If   is  and  is  and  is and  is   then ,,j j j j j
i i n nI A I A I A I A y Iy… … =  (10)

where Ii represents the input, n represents the dimension of the input,  j
iA  represents the fuzzy set 

of the antecedent part, j represents the jth rule, and yj(I) represents the fuzzy set of the 
consequent part. The Gaussian membership function is adopted for the fuzzy set of the 
antecedent. The firing strength of the membership function is defined as
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where j
im  and j

iSD  are the mean and standard deviation, respectively.
a) Rule layer: The firing strength of the membership function is used to perform a fuzzy AND 

operation to obtain the firing strength of a fuzzy rule. The fuzzy AND operation adopted in 
this study involves using the product operation and is defined as
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b) Consequent layer: The consequent part of the fuzzy law is expressed in TSK form and is a 
linear combination of the inputs. The expression is 
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where 0 1 2, ,  ,  , j j j j
na a a a…  are adjustable parameters.

Fig. 5. (Color online) Global pooling process.
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c) Output layer: The output of the TNFN is defined as 
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3. Experimental Results

3.1 Dataset

 The public dataset Ninapro DB1(18) was used for model training and testing. This dataset was 
collected using ten Otto Bock MyoBock 13E200 electrodes as sEMG signal sensors. A total of 
27 healthy subjects (20 men and 7 women) performed 52 unique movements ten times each. Two 
subjects were left-handed, and the remaining subjects were right-handed. The heights of the 
subjects ranged from 155 to 185 cm, and their ages ranged from 22 to 40 years. The subjects 
were asked to mimic the hand movements shown to them in a movie played on a computer 
screen. They performed three exercises in the experiment: 1) basic movements of the fingers; 2) 
isometric and isotonic hand configurations and basic wrist movements; and 3) grasping and 
functional movements. Each action in the Ninapro DB1 dataset was continuously recorded for 5 
s at a sampling frequency of 100 Hz; thus, the length of each data set was 500 sampling points.

3.2 Data preprocessing results

 An original signal from Ninapro DB1 is shown in Fig. 6(a). First, WD was used to perform 
noise filtering. The denoised sEMG signal is displayed in Fig. 6(b). FFT was then used to convert 
the time-domain sEMG signal into the frequency domain, as depicted in Fig. 6(c).
 In the dataset, the signals of each category were randomly divided into training, verification, 
and test sets with a ratio of 6:2:2. Table 1 shows the number of signals in each set.

3.3 Model evaluation metrics

 To evaluate the performance of the proposed VK-CTNFC, four evaluation metrics, namely, 
accuracy, precision, recall, and F1-score, were used. These evaluation metrics are defined as 

 TP TNAccuracy
TP FP TN FN

+
=

+ + +
, (15)

 TPPrecision
TP FN

=
+

, (16)

 TPRecall
TP FP

=
+

, (17)
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where TP, TN, FP, and FN indicate true positive, true negative, false positive, and false negative, 
respectively.

3.4 Performance analysis and comparison

 VK-CTNFC architectures with various numbers of vector–kernel convolutional layers were 
analyzed to optimize the classification performance. The setting values of each convolutional 
layer are shown in Table 2. Table 3 presents the accuracy values of various vector–kernel 
convolution layers; the architecture with three vector–kernel convolutional layers achieved the 
highest classification accuracy.

Fig. 6. (Color online) (a) Original, (b) denoised, and (c) FFT-transformed sEMG signals.

Table 1 
Sizes of the training, validation, and test sets.
Dataset Number of data
Training 8426
Validation 2808
Test 2808
Total 14042

(a) (b)

(c)



632 Sensors and Materials, Vol. 36, No. 2 (2024)

 To ensure the accuracy of the evaluation, the proposed VK-CTNFC was tested three times, 
and the results were averaged (Table 4). Figure 7 presents the confusion matrix obtained for the 
VK-CTNFC.
 A conventional CNN with a three-layer 5 × 5 kernel and VK-CTNFC models with three-layer 
5 × 1 and 1 × 5 vector–kernel convolutions were trained, and their performance characteristics 
were compared. Various preprocessing techniques, namely, no preprocessing, WD, FFT, and 
WD + FFT, were used to investigate their effects on classification performance. The fusion 
methods of GAP and GMP were also compared. Table 5 presents the results obtained with the 
conventional CNN and VK-CTNFC model. The original CNN has 1.77 times the total number of 
training parameters of the VK-CTNFC models (2064400 and 1163000, respectively). For feature 
fusion, models using GAP had a higher accuracy than those using GMP because the results of 
GMP might be excessively affected by the maximum value of the feature map. The use of a 
single data preprocessing method, whether WD or FFT, improved the classification accuracy; 
however, the combination of WD and FFT with GAP feature fusion resulted in the highest 
classification accuracy (87.18%). The accuracy, precision, recall, and F1-score of the optimized 
model (VK-CTNFC with WD + FFT and GAP) were 87.18, 88.43, 86.68, and 87.53%, 
respectively.

3.5 Comparison of proposed method with existing methods

 The accuracy of the proposed VK-CTNFC was compared with that of other classifiers 
proposed in the literature by using the same dataset. The methods selected for comparison 
comprised conventional machine learning methods, namely, the random forest method of Atzori 
et al.(13) and the LDA and least-squares-SVM (LS-SVM) method of Nazemi and Maleki(27), and 
deep learning methods, namely, the multistream CNN architecture of Wei et al.,(17) the CNN 
architecture of Atzori et al.,(16) and the CNN topologies method of Olsson et al.(18)

 The deep learning methods had one of two input methods: the multistream CNN or single-
stream CNN method [Figs. 8(a) and 8(b), respectively]. The multistream CNN method involves 
dividing the input sEMG signal into multiple equal-sized signals and inputting them into 

Table 3
Accuracy values achieved with different numbers of vector–kernel convolutional layers.
No. of vector–kernel convolution layers Accuracy (%)
1 49.47
2 85.29
3 87.18
4 85.61

Table 2
Settings for each convolutional layer.
Convolution layer Number of filters k Activation
1 100 5 ReLU
2 200 5 ReLU
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Table 4
Evaluation indices for VK-CTNFC.
No. of experiment
times Accuracy (%) Precision (%) Recall (%) F1-score (%)

1st 87.29 88.46 86.92 87.67
2nd 87.04 88.42 86.60 87.48
3rd 87.22 88.42 86.53 87.45
Average 87.18 88.43 86.68 87.53

Fig. 7. (Color online) Confusion matrix for VK-CTNFC.

multiple independent CNN architectures for feature extraction and classification. By contrast, in 
the single-stream CNN method, sEMG signals are directly extracted and classified without 
segmentation. The proposed VK-CTNFC architecture uses a single-stream CNN approach. 
Table 6 shows a performance comparison of the aforementioned model architectures. The 
accuracy of the proposed VK-CTNFC architecture (87.1%) was higher than those of the other 
methods. In particular, its accuracy was 5.78% higher than those of other single-stream deep 
learning methods.(18) Thus, the results indicate that our architecture substantially outperforms 
similar architectures proposed in the literature.
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Fig. 8. (Color online) (a) Multistream and (b) single-stream CNN methods.

(a)

(b)

Table 5
Performance of a CNN and two VK-CTNFC models with various preprocessing and pooling methods.

Models Preprocessing Fusion Accuracy (%) Precision (%) Recall (%) F1-score (%)
Total 

number of 
parameters

Original 
CNN

None GAP 84.19 85.76 83.72 84.71

2064400

GMP 82.48 84.35 80.88 82.55

WD GAP 84.22 86.18 83.12 84.59
GMP 81.27 83.10 80.20 81.59

FFT GAP 86.11 87.71 85.29 86.46
GMP 83.01 85.00 81.68 83.26

WD+FFT GAP 86.15 87.34 85.87 86.43
GMP 83.75 85.29 83.29 84.25

VK-CTNFC

None GAP 86.15 87.87 85.14 86.45

1163000

GMP 84.72 86.51 83.91 85.17

WD GAP 86.86 87.93 86.25 87.06
GMP 85.26 86.39 84.53 85.43

FFT GAP 86.61 88.00 85.97 86.96
GMP 86.18 87.70 85.19 86.41

WD+FFT GAP 87.18 88.43 86.68 87.53
GMP 84.47 86.04 83.68 84.82
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 We also compared the numbers of trainable parameters of the proposed architecture and two 
other architectures (Table 7). The proposed VK-CTNFC architecture required considerably 
fewer trainable parameters than did the other two architectures (i.e., multistream and single-
stream architectures).

4. Conclusions

 In this paper, the VK-CTNFC, which combines vector–kernel convolution and the TNFN, is 
proposed to recognize human gestures from sEMG signals. In the VK-CTNFC, vector–kernel 
convolution is used to extract the features of sEMG signals; this modification reduces the 
number of parameters by half compared with that achieved with a conventional CNN. The GAP 
method is used for feature fusion, and a TNFN is then used for gesture classification. The 
publicly available dataset Ninapro DB1 was used to conduct experiments to verify the 
performance of the proposed VK-CTNFC. In our experiments, WD and FFT were used for data 
preprocessing. The experimental results indicate that the accuracy, precision, recall, and F1-
score of the VK-CTNFC are 87.18, 88.43, 86.68, and 87.53%, respectively, and this classifier 
outperforms similar models proposed in previous relevant studies. Moreover, the model only 
requires 1163000 parameters.
 Because many parameters of the proposed VK-CTNFC model must be determined by trial 
and error, developing the model is time-consuming; therefore, this model must be optimized 
further. In future research, we intend to use the Taguchi method(28) or uniform experimental 
design method(29) to obtain the optimal parameters of the proposed model by using a small 
number of experiments.

Table 6 
Accuracy comparison of various model architectures.
Architecture Method Accuracy (%)
RF by Atzori et al.(13) Machine learning 75.32
LDA by Nazemi and Maleki(27) Machine learning 84.23
LS-SVM by Nazemi and Maleki(27) Machine learning 85.19
Multistream CNN by Wei et al.(17) Multistream CNN 85.0
CNN by Atzori et al.(16) Single-stream CNN 66.59 ± 6.40
CNN topologies by Olsson et al.(18) Single-stream CNN 81.4 ± 4.0

Our method
VK-CTNFC with only WD Single-stream CNN 86.86
VK-CTNFC with only FFT Single-stream CNN 86.61
VK-CTNFC with WD and FFT Single-stream CNN 87.18

Table 7
Number of trainable parameters for various architectures.
Architecture Stream type Trainable parameters
Multistream CNN by Wei et al.(17) Multistream 8.69 × 106

Original CNN Single-stream 2.06 × 106

VK-CTNFC Single-stream 1.16 × 106
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