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	 With the expansion and deployment of smart metering in power grid management and 
control, the need for security protection in the power system is continuously growing. However, 
the current construction of a comprehensive defense system for terminal data is inadequate. In 
this paper, we report a study on power loads to address the security challenges facing grid 
management, using the protection detection response recovery (PDRR) network security model 
as the basis. Firstly, we design an end-to-end security perception architecture using IoT 
technology and develop an optimization model for monitoring sensor information. In addition, 
we construct a data aggregation model that improves adversarial domain adaptation and 
incorporates deep convolutional neural networks to extract features. The proposed model 
enhances short-term load forecasting by combining linear predictions from autoregressive 
models with the nonlinear trend analysis capabilities of deep learning models. The performance 
of the proposed method is compared with those of the Adam and stochastic gradient descent 
(SGD) optimizers. Experimental results confirm that the proposed method ensures reliable data 
transmission, facilitates effective classification aggregation of heterogeneous data, and yields 
fast and accurate load forecasting results. Furthermore, the proposed method enhances the 
robustness of the model.

1.	 Introduction

	 The development of the power industry is crucial to a country’s economic strength and 
overall development. However, with the increasing adoption of information management 
systems in this industry, there is a growing concern about network security threats. In response 
to these Cyber Attacks affecting electricity security, the US Department of Defense (DoD) has 
proposed the PDRR network security model, which consists of four elements: Protection, 
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Detection, Response, and Recovery.(1,2) Among these elements, security detection is a proactive 
defense measure that requires security monitoring to address the vulnerabilities caused by 
unforeseen security threats. By employing various technological means to collect and analyze 
data from the power grid, it is possible to achieve a sense of situational awareness regarding the 
security of the distribution network.
	 Currently, there is a need for research on deep networks that are more suitable for domain 
adaptation to overcome the limitations of deep learning. Convolutional neural networks (CNNs) 
were originally proposed by LeCun in France for postal code recognition.(3) Baid et al. improved 
the structure of one-dimensional CNNs and introduced the temporal convolutional network 
(TCN), an algorithm designed for time series data prediction.(4) Moreover, there are other deep 
learning networks such as recurrent neural network (RNN), long short-term memory (LSTM), 
and gated recurrent unit (GRU). Deep domain adaptation enhances the traditional deep 
classification network structure by introducing adaptive layers to achieve the goals of data 
distribution adaptation. This method was initially introduced in the domain adaptive neural 
network (DaNN).(5–8) Subsequently, numerous researchers have been influenced by generative 
adversarial networks (GANs),(9) which consist of generating networks and discriminating 
networks, and have made advancements in adaptive methods. (10) While these techniques of data 
aggregation and analysis are mature, they still encounter challenges in handling substantial 
amounts of diverse security data. Therefore, there is a pressing need for innovations using the 
IoT technology proposed.(11) With the popularization of IoT technology, it is particularly 
important to set up appropriate sensors in the field of power.(12,13) However, the research on the 
modeling of wireless sensor transmission in power systems is not perfect.
	 In this study, we first construct a monitoring sensor optimization model to improve 
communication channels and design a distribution network security data aggregation model 
based on adversarial domain adaptation networks. Data is effectively classified through 
reasonable feature extraction. Secondly, we use real data from smart grid terminals to build a 
load prediction model based on AdaBelief optimization. The accuracy and robustness of the 
model are verified through simulation experiments.

2.	 Optimization Model for Terminal Monitoring Sensors

	 Firstly, a smart safety monitoring system is designed for the power distribution network using 
IoT technology.(14–16) It consists of the end-point perception layer, information access layer, and 
cloud platform computing layer. To enhance the network security monitoring performance of the 
intelligent measurement network, we propose an optimization model for monitoring sensor 
information in the perception layer. This model improves the information interaction capability 
of the safety monitoring system and meets the requirements of high-dimensional, large-scale, 
and multinode data access in the smart grid system. Additionally, it resolves the issue of data 
format differences caused by various sensor technologies.



Sensors and Materials, Vol. 36, No. 1 (2024)	 325

2.1	 Design of the optimization model

	 To obtain the complete analysis of information in the PDRR model, the communication 
framework of a wireless sensor is constructed in this study. It uses its communication model to 
capture accurate and complete information in real time. The detailed steps for designing the data 
model of the perception layer sensing devices in the distribution grid monitoring system by 
integrating and unifying the data from sensors of different specifications are as follows.
1)	 Basics and standards of intelligent transducer electronic data sheets (TEDS): The term 

“basics” pertains to the essential requirement of having TEDS for carrying out data source 
tasks and acquiring pertinent information from the sensor nodes. The term “standards” refers 
to the IEEE 1451.4 standard, which evaluates the TEDS technology and mandates that the 
electrical connections, content, and data formats be standardized and stored in TEDS 
templates in electronic form.

2)	 Security protection: The monitoring sensors of the system detect abnormal data. Upon the 
occurrence of a fault or threat, the data information is uploaded to the IoT cloud, and the 
processor issues instructions and backs up data to ensure the real-time security of the smart 
power IoT. TEDS technology facilitates the use of data templates for various sensor types, 
allowing for the transmission of sensor parameters and calibration dates, and providing a 
means for modifying calibration through small incremental data adjustments.

3)	 Deployment strategy: To tackle the complexity of information interaction resulting from 
inconsistent sensor data models, we propose the construction of a sensor information model 
with unified semantics and data formats in the design of the data aggregation control module. 
This approach allows for easy integration and compatibility of sensors. Moreover, the 
advanced TEDS circuit design enables smart sensors to seamlessly switch between reading 
and measurement states, while the support for multiple wiring methods enhances the 
versatility of sensor applications in various scenarios. 

In Fig. 1, the structure of the terminal perception layer framework built in the paper is shown.

Fig. 1.	 (Color online) Terminal perception layer framework.



326	 Sensors and Materials, Vol. 36, No. 1 (2024)

2.2	 Optimization model algorithm

	 To effectively reduce the error rate of information transmission and improve the speed of 
information transmission, a precise IoT channel model is proposed. Taking the complex 
conditions of multipaths into consideration, the IoT transmission channel model is formulated as 
follows.

	 [ ] [ ]{ }2 2
1 2 1 2
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c f A cv cv sv cv
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= + + + 	 (1)

where |c( f )| represents transfer function of the channel, and v1 and v2 express the values of the 
input and output signals, respectively.
	 By quantitatively decomposing multiple independent fading channels, the following 
quantized balanced transmission channel model can be obtained.
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where 2 ( ,1)i k∆  represents the quantized equilibrium value.
	 Considering the interference among multipaths and the deployment pattern of complex 
sensors, the signal reception model for mutual sensing between sensor nodes in the IoT is given 
as

	
1

( ) ( ) ( ), 1 .mi
I j

m i mi
x t s t e n t p mϕ

=
= + − + ≤∑ 	 (3)

This results in higher data transmission accuracy, significantly reduced average hop count of 
data packets, and reduced time delay.

2.3	 Experimental simulation and analysis

	 In the hardware environment for model development and experimental simulation, the 
operating system used is Windows 10 Ultimate Edition. The optimization model for monitoring 
sensor information in the perception layer is executed on the Optimum Network Performance 
(OPNET) simulation platform. This platform allows for improved system response speed, 
enabling the validation of the sensor optimization system’s performance. By using the principle 
of perceptual similarity, the perception layer is simulated using the OPNET platform, with the 
specific parameters given in Table 1.
	 Table 2 shows the highest improvement percentage in the two scenarios. Here, Scene 1 
represents the traditional IoT power system, and Scene 2 represents the ubiquitous IoT system 
proposed in this section. To show the superiority of the proposed method, we compare the 
performance of the two scenarios.
	 According to Fig. 2, the system presented in this section, ubiquitous power IoT (UPIoT), 
exhibits a reduction in the average hop count and time delay in comparison with the traditional 
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mode. This suggests an enhancement in the response speed of the sensor information 
optimization model proposed in this paper. The data presented in Table 2 indicates that UPIoT 
demonstrates an improvement of 23.8% in interaction efficiency compared with previous 
systems.

3.	 Load Data Aggregation Model Using Adversarial Domain Adaptation Network

3.1	 Load data preprocessing

	 The available data consists of load values of a specific region over two months, encompassing 
parameters such as three-phase voltage, three-phase current, active power, reactive power, 
power factor, and other interval values recorded every 15 min. To evaluate the distribution of 
current within the system, the degree of imbalance in three-phase currents is often employed as 
a metric. The equation describing this indicator is presented below:

Table 1
Simulation parameters.

Simulation Scene Sensor deployment 
nodes

Deployment 
range (km) Routing protocol Available 

channels
Transmission 
distance (m)

Scene 1 50 3 × 10 AOD 1 500
Scene 2 50 3 × 10 AODV 3 500/1000/1500

Table 2
Highest improvement percentage in two scenes.
Simulation Scene Percentage
Scene 1 66.8
Scene 2 90.6

(a) (b)

Fig. 2.	 (Color online) Average transmission results of data. (a) Energy consumption and (b) improvement 
percentage.
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	 E = Puseful × 0.25.	 (5)

IA, IB, and IC respectively represent the current of each phase of the three-phase generator, and 
Eq. (4) indicates the unbalance of the three-phase current.
1) The original load data is imported into the SPSS (a data processing tool) software for data 

preprocessing. Initially, the median absolute deviation (MAD) method is employed to detect 
and replace any outliers that are identified with the mean value. MAD is calculated as the 
median of the absolute deviations from the median. The deviations can have both positive and 
negative values in a univariate sequence.

	 ( )( )iMAD median X median X= − 	 (6)

Assuming the data follows a normal distribution, the outliers should fall outside the 50% 
probability, while the normal values should fall within the middle 50% region, i.e.,
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Under a normal distribution, ±0.6749 covers 50% of the area, 1/0.6749 ≈ 1.4826, so

	 MADc = 1.483 ∙ MAD.	 (8)

2) To eliminate the influence of different data units on the result analysis, the min–max 
normalization method is used for normalization; this centralizes the dimensionless data 
values in the range (0, 1). The specific equation is
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where max
jx  and min

jx  represents the maximum and minimum values of the column.

3.2	 Experimental simulation and analysis load data aggregation analysis based on 
adversarial domain adaptation

	 GANs utilize the concept of a zero-sum game,(14,15) which revolves around cooperation and 
competition between the generator and the discriminator. The generator, referred to as the 
generative network, creates samples that closely resemble real data by utilizing random noise. 
On the other hand, the discriminator, known as the discriminative network, classifies the 
generated samples in order to differentiate between real and fake data. Through this adversarial 
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game, both networks engage in training and enhance their performance through dynamic 
interactions. The design process of GAN is shown in Fig. 3 and Table 3.
	 The theoretical implementation of GAN is mainly accomplished using the following three 
equations.
1) Mathematical expectation of a continuous function:

	 ( ) ( )E x xf x dx= ∫ 	 (10)

2) KL divergence:
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3) JSD divergence:
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	 By incorporating the adversarial mindset of GAN and domain adaptation, an adversarial 
domain adaptation is formed. Overall, the three optimization objectives form a stubborn loss 
function for adversarial domain adaptation, as follows:
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where xi is the input sample, ( ) ( )( ) ( )( ), ,f i y f i d f iG x G G x G G x, ( ) ( )( ) ( )( ), ,f i y f i d f iG x G G x G G x, and ( ) ( )( ) ( )( ), ,f i y f i d f iG x G G x G G x  are the outputs of the feature 
extractor, the label classifier, and the domain discriminator, respectively, yi is the class label of 
the actual sample, and bi is the domain label of the actual sample.
	 The loss function of the label classifier is calculated using cross-entropy loss and is expressed 
as
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where 
ix tP →  is the probability that the input sample xi belongs to class t. After learning and 

training, the parameters of the three modules can be represented as 

	 ( ) ( ), ,ˆ , argmin , ,ˆ
f yf f y dy Lθ θ θ θθ θθ = 	 (15)

	 ( ) ( )ˆ argmax , , .d f y dLθ θ θ θ= 	 (16)

	 According to the T-SNE algorithm designed in this paper, the clustering results before and 
after optimization were obtained, as shown in Fig. 4.
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3.3	 Experimental simulation and analysis

	 Next, we implemented the model establishment and experimental simulation using Python 
3.9.7. The preprocessed data was divided into the source domain (A) and the target domain (B). 

Fig. 3.	 (Color online) Algorithm flow of generative adversarial network (GAN).

Table 3
Specific functions of each module.

Module
Specific function Feature extractor Label Classifier Domain Discriminator

Course of events
Extract features to map to 
feature space, obfuscate data 
sources as much as possible

Cla s s i f y a l ig ne d sou rce 
and target domain features, 

identify the right label

Disc r i m i na t e domai n of 
features to discern the source 

of data

Purpose To maximize the loss Ld to 
learn the parameter θf

To minimize the loss Ly to 
learn the parameter θy

To minimize the loss Ld to 
learn the parameter θd

(a) (b)

Fig. 4.	 (Color online) Data aggregation visualization based on T-SNE: (a) before aggregation and (b) after 
aggregation.
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To evaluate the effectiveness of the adversarial domain adaptation data aggregation model, we 
performed feature visualization and convergence verification. We used 60% of the samples in 
the target domain as the training set, 20% as the validation set, and the remaining samples as the 
test set. The results of the experiment are presented in Fig. 5.
1)	 Feature Visualization: According to the figure, the aggregated classification boundaries are 

distinct, indicating effective aggregation and alignment of data distributions between the 
source and target domains.

2)	 Convergence Verification: The accuracy curve and loss function curve of the model as the 
number of iterations increases are shown in Fig. 6.

	 From the analysis of the accuracy and loss curves, it is evident that the model’s accuracy 
levels off and reaches a stable point as the number of iterations increases. This finding 
suggests that the experimental results exhibit accurate aggregation and consistent training 
performance.

4.	 Short-term Load Forecasting based on AdaBelief Optimization

	 Previous studies have revealed that short-term load time series data displays substantial 
randomness and nonlinear properties. Accurate and prompt short-term load forecasting is vital 
to guarantee the secure and dependable operation of the power system. Taking into consideration 
the current state of research both domestically and internationally, in this section, we put forward 
a solution for enhancing and refining deep learning techniques in the realm of short-term load 
forecasting. The key aspects of this proposal involve optimizing a deep learning module through 
the utilization of the AdaBelief optimizer and incorporating autoregressive algorithms for 
improved assistance.

4.1	 Improved load forecasting framework based on deep learning

	 The data that has undergone feature selection is imported into the improved deep learning 
prediction model. The model is composed of two components. The first is an optimized deep 
learning module, which can be embedded in any deep learning method. In this paper, a TCN 
model is chosen as the optimization algorithm on the basis of previous research findings. The 
second is a linear trend analysis prediction model based on autoregressive (AR) models. The 
specific framework is depicted in Fig. 7.
	 Here, the prediction result of the TCN model is yo, and the prediction result of the AR model 
is yr. The AR model learns the linear patterns of multiple time series, and its equation is 

	
0

,
n

r
k t k

k
y H y c−

=

= +∑ 	 (17)

where D
kH ∈  and c∈ represent the coefficients of the model and n is the order of the model.

	 The final prediction result in this section is the combination of the nonlinear trend and the 
linear trend components, which is obtained as
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(a)

(b)

Fig. 6.	 (Color online) (a) Accuracy and (b) loss function curves of the aggregation model.

(a) (b)

Fig. 5.	 (Color online) Feature distribution of source domain and target domain: (a) before and (b) after aggregation.
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	 y = αyr + (1 − α)yo,	 (18)

where α is the optimal weight coefficient obtained through multiple repeated experiments. The 
AR model has an auxiliary role of dealing with the phenomenon that deep learning is insensitive 
to changes in data scale.

4.2	 Results and analysis of experiment

	 The algorithm implementation described in this paper is based on the Python language, and 
open-source programs on Github related to deep learning are utilized for learning. To handle the 
dataset, 80% of the data is utilized as the training set, while 10% is allocated as the validation set 
and another 10% is allocated as the test set for purposes such as training, parameter tuning, and 
measuring prediction accuracy. The TCN model adopts the default parameters provided by the 
Keras library® to ensure the generality of the framework design.
1) Validation of effectiveness of AdaBelief optimizer
	 In this section, a unified learning rate (Ratelearning = le − 2) and the number of iterations 
(n = 90) are set, and the losses of the TCN network under the AdaBelief, Adam, and SGD 
optimization algorithms are compared. The mean square error (MSE) is used as the loss function 
for performance comparison.

	 ( )2

1

1 N

i i
i

Loss y Y
N =

= −∑ 	 (19)

	 In Fig. 8, (a) represents the training loss, and (b) represents the validation loss. It can be seen 
that the training and validation losses of the AdaBelief optimization algorithm are both lower 
than those of the other two algorithms, and it also has the highest learning speed.

Fig. 7.	 (Color online) Load prediction framework.
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	 The AdaBelief optimization technique dynamically adjusts the learning rate during each step 
of training to ensure that the decreasing trend of the two losses remains consistent. This 
adjustment helps to meet the requirements for good training without the need to manually tune 
parameters to improve prediction performance. Additionally, it prevents issues such as 
overfitting or training instability. yi and Yi represent the actual load values and predicted load 
values in the model, and N represents the total number of samples.
	 The AdaBelief optimization technique dynamically adjusts the learning rate during each step 
of training to ensure that the decreasing trend of the two losses remains consistent. This 
adjustment helps to meet the requirements for good training, without the need to manually tune 
parameters to improve prediction performance.
	 Figure 8 shows that the AdaBelief optimization algorithm has the highest number of 
predictions within a small error range, with an absolute error of less than 2000 MW. In 
comparison with Table 4, its RSE value is significantly smaller than the other two optimization 
algorithms, and the CORR value is close to 1. These results indicate that the method described in 
this section considerably improves the prediction accuracy of the deep learning model. 
Additionally, the iteration time is better than those of the other methods, demonstrating a faster 
response.

5.	 Conclusions
	
	 Research results intuitively provide decision support for the monitoring and management of 
the distribution IoT. Our proposed research method combines the PDRR model with IoT 

(a) (b)

Fig. 8.	 (Color online) MSE loss functions and errors for three optimization algorithms. (a) MSE loss and (b)  
prediction quantity.

Table 4
Results of prediction.
Optimizer Type RSE CORR Iteration time per Step (s)
AdaBelief 0.1023 0.9987 92
Adam 0.5799 0.8151 127
SGD 0.3268 0.9623 102
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technology to optimize the information transmission performance of end sensors and promote 
the load data aggregation and prediction performance in the distribution grid. By improving the 
information transmission speed of the perception layer and the efficiency of the sensor system, 
the optimized model of end monitoring sensors enhances the overall performance of the secure 
data of the distribution IoT. This ensures the reliability and accuracy of the subsequent data 
analysis. To solve the limitations of traditional deep learning algorithms for multidomain 
heterogeneous data, a data aggregation model based on adversarial domain adaptation was 
proposed in this paper. The model achieves accurate data aggregation with good convergence, 
while suitable features can be extracted for analysis. The visualization of data analysis presents 
the research results in a clear and intuitive manner. This supports decision-making for the 
monitoring and management of the distribution IoT. Overall, an optimized research method that 
improves the security and efficiency of data transmission and analysis in the distribution IoT is 
presented in this paper. The proposed models and techniques offer valuable insights for the 
practical implementation of secure data monitoring and management in IoT systems.
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