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 Accurate forecasting of solar power generation plays an important role in stabilizing power 
dispatch. Therefore, numerous machine learning models and deep learning models have been 
used for power generation forecasting. However, since a single independent model still has 
performance limitations, the prediction model of the ensemble model is adopted to aggregate the 
advantages of different independent models. Furthermore, its prediction error and generalization 
performance are both better than those of a single model. In this study, the stacking ensemble 
method was employed to gather four different base learners and then incorporated with the 
k-fold cross-validation for model training and testing. Meanwhile, a mobile IoT data collection 
system was also built, in which IoT sensors were applied to collect data of weather factors (solar 
radiation, ambient temperature, humidity, and wind velocity) as well as of solar power 
generation. Next, the real-time monitoring system for solar power generation developed in this 
study displayed real-time power generation and data storage. The experimental results showed 
that the root mean square error of the solar power generation prediction model, that is, the 
regression ensemble model (RGEM) proposed by this study, dropped by 6.24, 8.31, 9.94, and 
4.21%, respectively, in model testing compared with those of the independent model support 
vector regression, least squares support vector regression, least absolute shrinkage and selection 
operator, and ridge. Besides, RGEM’s testing mean absolute percentage error = 0.0966 indicated 
a prediction model of high accuracy.

1. Introduction

 Renewable energy is the energy received from nature, such as solar energy, wind power, and 
geothermal energy. Resources of renewable energy are abundant and can be continuously 
supplemented by nature. In addition, in the process of energy transformation (such as to electric 
energy), they do not produce other natural products that contain pollutants. Therefore, they are 
viewed as the most important sources of clean energy for the future.(1) Solar energy is currently 
one of the most critical renewable energy sources. According to the report of the International 
Renewable Energy Agency, the power generation capacity of global solar panels rose from 40 
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MW to 217 MW between 2010 and 2015, representing an increase of 442.5%, and from 291 MW 
to 580 MW between 2016 and 2019, which was almost 13.5 times the power generation capacity 
of the previous 10 years.(2) In addition, according to the Renewables 2022 Global Status Report, 
the power generation capacity of global solar panels increased from 767 MW to 942 MW 
between 2020 and 2022.(3) Solar power plants will supply electricity into the power grid and 
operate in parallel with other power plants. Consequently, research issues on power dispatching 
as well as system power supply stability and security are becoming increasingly important. 
Although solar power can generate clean electricity, its greatest disadvantage is unstable power 
supply. For example, electricity cannot be generated on cloudy days, in rainy seasons, and at 
night. Stable power cannot be supplied at night in midsummer or during the peak time of power 
consumption. Thus, power scheduling between the solar power plants and other power plants is a 
key factor in stable power supply. However, the premise of power scheduling is that the power 
that the solar power plant can generate the next day must be known, making power generation 
forecasting of the solar power plant a very important research topic.(4)

 The power generation capacity of solar panels is affected by climatic factors such as ambient 
temperature, solar radiation, and weather. Accordingly, the different degrees of importance of 
these factors must be taken into account when predicting the power generation capacity. The 
climatic factors that affect the power generation capacity of solar panels include solar radiation, 
ambient temperature, photovoltaic (PV) panel surface temperature, humidity, wind velocity, 
wind direction, and dustfall. Among them, three factors, sunlight, ambient temperature, and PV 
panel surface temperature, have the greatest impact on the power generation capacity of solar 
panels.(5–10) Because of the impact of climate factors, the power generation forecasting model 
must be able to provide accurate forecasting results and to avoid overfitting and underfitting of 
the model. For instance, Jebli et al.(11) used the Pearson correlation coefficient to select the 
meteorological data required by different models, thereby escalating the accuracy of power 
generation forecasting as well as avoiding overfitting of the model. In the solar PV power 
generation forecasting field, applying machine learning (ML) algorithms to power generation 
prediction has received extensive attention. The research results of many groups have shown that 
the forecasting models built on ML algorithms could provide accurate estimations of solar power 
generation. For example, Mishra et al. proposed the use of the wavelet transform (WT) to 
convert solar energy time-series data into different frequency series for statistical feature 
extraction, followed by deep learning (DL) to optimize the learning ability of the long short-term 
memory (LSTM) network model, ultimately resulting in the optimal forecasting accuracy of 
power generation.(12)

 In the research category of solar panel power generation forecasting, on the basis of the 
length of the prediction period, the research types can be divided into four categories. The first 
category is very short-term forecasting (1 s to 1 h), which is applied to real-time electricity 
dispatch and maintaining the grid stability. The second type is short-term forecasting (1 h to 24 
h), which is applied to energy planning and grid management as well as to increase the security 
of the grid. The third category is medium-term forecasting (1 week to 1 month), used in 
scheduling the maintenance of grid management and energy planning. The fourth category is 
long-term forecasting (1 month to 1 year), which can be applied to energy policy making.(4,5,12) 
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This study belongs to the second category of power generation forecasting research and is aimed 
at predicting future solar power generation using different regression models [such as support 
vector regression (SVR), least square SVR (LSSVR), least absolute shrinkage and selection 
operator (LASSO), and ridge regression (RIDGE)] and an ensemble model. The accuracy of 
power generation forecasting by the regression model depends on which regression algorithms 
and input factors are used. In addition, the quality and quantity of training data will also affect 
the forecasting accuracy of the model. Erten and Aydilek(13) used different regression algorithms 
(such as Linear, RIDGE, LASSO, and Elastic) and the principal component analysis (PCA) 
feature extraction method to compare predictions of the maximum power generation capacity. 
Their research results revealed that all regression models could accurately predict the capacity of 
solar power generation, with the Elastic model in particular performing better than the others.
 The advantage of using the ensemble model for power generation forecasting is that it can 
combine different algorithms to produce more accurate and robust forecasting capabilities as 
well as overcome problems of high variance, low accuracy, and data noise better than a single 
prediction model.(14) Carneiro et al.(15) adopted multilayer perceptron (MLP), cascade forward 
back propagation (CFBP), self-organizing map (SOM), and radial basis function (RBF) network 
as the front-end predictors of the ensemble model. In addition, RIDGE regression was adopted 
to perform the linear combination for the output of each predictor and then carry out the final 
prediction output of the model. The research results have revealed that the model using the 
ensemble model was more accurate than the single prediction model in predicting either solar 
power generation or wind power. Aikandari and Ahmad(16) suggested that ML models should be 
combined with statistical models as the front-end predictors of the ensemble model, and 
ultimately, the prediction output of power generation of the model should be obtained by means 
of different ensemble methods. Their research results indicated that this type of ensemble 
method, where the variance combination of the inverse approach was used, had small errors and 
high accuracy. 
 As mentioned above, the accuracy of the power generation prediction model using the 
ensemble model is higher than that of the model using a single prediction algorithm. Therefore, 
herein, a solar power generation prediction model, the regression ensemble model (RGEM), 
which uses different regression models as the front-end predictors of the ensemble model 
followed by the use of a gradient boosting regressor (GBR) as the final estimator to predict the 
output of the model as well as adopting R2, mean square error (MSE), root mean square error 
(RMSE), mean aboslute percentage error (MAPE), and k-fold cross-validation (CV) for the 
evaluation of its efficiency and accuracy, is proposed. The predictors used by RGEM include 
four independent models: SVR, LSSVR, LASSO, and RIDGE. In the experiment, the horizon 
intervals of power generation forecasting are 15 min and 1 day. These four independent models 
are all capable of accurate power generation forecasting. However, if ensemble learning is used, 
then the RGEM prediction model can output more highly accurate forecasts of solar power 
generation.
 Furthermore, in terms of solar energy data collection, in this study, another mobile data 
collector (MDC) with IoT sensors is developed, facilitating the data collection of weather 
factors, solar panel surface temperature, and power generation capacity. Its structure is designed 
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to use IBM X3650 M5 as the system server and Ubuntu Server as the operating system, collect 
data of weather factors and power generation voltage through IoT sensors, solar panels, and solar 
inverters, and then send data back to the solar energy monitoring system (SEMS) via the 
Raspberry Pi Embedded System and the Internet. After referring to many practical studies,(17) 
the PHP Laravel programming language was selected for use in the SEMS proposed in this 
study to develop the monitoring system of the Internet of Things. In this SEMS, the real-time 
numerical changes of voltage and power generation will be displayed, and the data will be stored 
in the InfluxDB time series database (TSDB), facilitating downloading of the historical data as 
well as data analysis and management in the future, so as to achieve the purpose of monitoring 
solar power generation. In the proposed SEMS, the server uses the Docker Virtualization 
Technology to process tasks such as data storage, data distribution, and data inspection in 
different containers. Users can carry out remote monitoring with data transmission via the 
Internet to observe and control the system status anytime and anywhere. If something goes 
wrong, users can immediately receive a message through the LINE SNS, and someone can be 
sent to fix it. 
 As described above, this study is focused on enhancing the accuracy and the robustness of 
the prediction model. The major contributions of this paper are as follows.
1. Hardware construction: A MDC was built with IoT sensors to collect data of solar radiation, 

wind velocity, ambient temperature, and humidity. Also, a solar PV power generation 
monitoring system centered on Raspberry Pi, Docker container technology, and the InfluxDB 
database was developed for data collection and real-time monitoring to assist the future 
research on solar power generation.

2. Data collection: IoT sensors were installed in the solar PV power generation experimental 
field (702 kW) of the adiCET research center of Chiang Mai Rajabhat University in Thailand, 
and data on solar panel power generation and weather factors, including solar radiation, solar 
panel surface temperature, and ambient temperature, were also collected.

3. Data analysis and model evaluation: After the proposed ensemble model performed data 
preprocessing, model training, and testing using the adiCET solar database, the MAPE (15 
min ahead) of the prediction model was found to be 0.0966, which indicated that the proposed 
model can accurately predict solar power generation.

 This paper is structured as follows. In Sect. 2, related literature concerning different types of 
algorithms are explored and the current research status of solar power generation forecasting is 
explained. In Sect. 3, the statistical approaches, ML algorithms, and the ensemble model adopted 
in this study are discussed. The evaluation and experimental results of the different models are 
presented in Sect. 4. Finally, the conclusions of this study are given in Sect. 5.

2. Related Works

 Many studies have adopted statistical approaches, ML, and DL as models for predicting solar 
panel power generation. Frequently used statistical and ML algorithms include support vector 
machine (SVM)(18), SVR, LASSO, RIDGE, autoregressive (AR), AR integrated moving average 
(ARIMA), and ARIMA with exogenous inputs (ARIMAX) algorithms. Some commonly 
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applied DL algorithms include artificial neural network (ANN), and LSTM. AR, ARIMA, and 
ARIMAX all belong to the time series of forecasting models in statistical approaches, which are 
suitable for short-term forecasting and long-term forecasting. ARIMA is an extended model of 
AR because it takes into account the nonstationarity of the datasets and can handle data with 
trends and seasonal components. Therefore, ARIMA is suitable for long-term forecasting. 
ARIMAX is an extension of the ARIMA model since the model contains exogenous variables, 
such as weather data or external independent variables that can affect dependent variables, so 
that it can enhance the accuracy of predictions. Kim et al.(19) used seasonal autoregressive 
integrated moving average with exogenous factors (SARIMAX) and LSTM as the front-end 
predictors of a prediction model with the stacking ensemble technique to predict the power 
generation. The experimental results demonstrated that the RMSE of this ensemble model was 
95.800, which was lower than that of other models (SARIMAX: 102.575, LSTM: 106.123, SVR 
linear: 109.130, deep neural network (DNN): 101.783, random forest: 106.226). Compared with 
the traditional time series of forecasting models, ANN can better handle and represent complex 
nonlinear relationships among variables. Recurrent neural network (RNN) is a neural network 
that is suitable for processing the time-series sequential data. However, in the training phase of 
the model, if the sequential data is too long, the vanishing gradient problem may arise. Since 
LSTM is an RNN-type neural network, which can retain or delete information by controlling the 
gate of information flow and a memory cell, it can solve the vanishing gradient problem as well 
as process longer sequential data.
 As weather factors were adopted in this study to predict solar power generation, the applied 
ensemble model used Statistical Approaches and ML algorithms as the front-end predictors of 
the model. Finally, the prediction results were output through the meta-model. SVM is a 
supervised learning algorithm often1 applied to data classification. Its main principle is to 
project raw datasets to high dimensions via kernel functions, find a hyperplane with the 
maximum width for data classification, and use kernel functions to solve the problem of non-
linearly separable data. Zeng and Qiao(20) used SVM as the basis of modeling and adopted RBF 
kernel functions and historical data of atmospheric transmittance in two-dimensional form, and 
related meteorological variables to conduct the predictions of atmospheric transmittance and 
power generation. The research results revealed that their prediction accuracy performed better 
than the AR model in the time series model and the RBF neural network model (RBFNN) in the 
neural network. 
 SVR is an extended model of SVM and is a commonly used nonlinear regression model. The 
SVR model establishes the nonlinear relationships between input variables and output variables 
through data conversion of kernel functions. The commonly used kernel functions include RBF 
and polynomial kernels. Alfadda et al.(21) used SVR and five different factors (outdoor 
temperature, solar irradiance, module temperature, wind velocity, and output power) to construct 
the prediction model and compared the RMSE error of its predicted values with that of the 
models such as linear regression, quadratic regression, and LASSO. The research results 
indicated that the SVR model had a lower RMSE value of power generation prediction. Fentis et 
al.(22) employed LSSVR and feed-forward neural network (FFNN) to build the power generation 
prediction model. The research results showed that LSSVR had a lower RMSE value than FFNN 
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(LSSVR, MSE = 0.0043, R2 = 0.96). LASSO and RIDGE are two regularization techniques 
commonly used in regression models. The purpose is to avoid the problem of model overfitting 
caused by an overly complex model as well as to reduce generalization error without affecting 
the training error, so that the model can improve its generalization ability and prediction 
accuracy when facing new data in the future. Tang et al.(23) proposed a power generation 
forecasting model built with the LASSO regression model, including coefficient estimation and 
link function estimation, to carry out the coefficient estimates of the regression model and of the 
link function. The research results indicated that when the RMSE values of the LASSO-based 
model, the SVM model, and time-varying local linear estimation (TLLE) model were compared, 
that of the LASSO-based model was greatly reduced by 60.06%, and the lowest MAPE value 
was 3.3357, indicating that the LASSO-based model could accurately predict power generation. 
The difference between the RIDGE model and the LASSO model is that the RIDGE model uses 
L2 regularization to avoid the problem of model overfitting. In its loss function, the penalty term 
controls the size of the coefficient, and the coefficient value of the noninfluential variable is 
close to zero, thereby decreasing the SSE of the model and improving the generalization 
performance of the model. 
 The ensemble model lowers the errors and biases of a single prediction model by combining 
multiple statistical models or ML models, so that the accuracy and robustness of the prediction 
model can be increased. Numerous research results have shown that in solar power generation 
forecasting, the accuracy of the ensemble model is higher than that of a single forecasting 
model.(14,16) Amarasinghe et al.(24) came up with an ensemble model comprising a combination 
of three models: deep belief network (DBN), SVM, and random forest (RF). They first classified 
the data for the weather, then trained and tested multiple ensemble models, and finally output the 
power generation prediction (RMSE = 0.0591). Their research results revealed that the RMSE of 
the ensemble model compared with that of the three single DBN, SVM, and RF models (the 
training data of the three single models were not preprocessed by weather classification) was 
lowered by 8.74% on average (RMSE reduction: DBN 10.49%; SVM 7.78%; RF 7.95%). Sharma 
et al.(25) first decomposed the time series data, then constructed an ensemble model with 
multivariate LSTM for training and output the weight of each LSTM, and lastly, carried out 
weighted aggregation and obtained the final output of the prediction value. In the results of the 
1-day-ahead experiment, the MAPE = 1.526 and RMSE = 0.1109 of the ensemble model were 
lower than those of other compared models (MAPE: DWT-LSTM 1.7423; LSTM 1.7744; RNN 
2.5326; GRU 2.5321; neuro-fuzzy technique 1.5491) (RMSE: discrete wavelet transformation 
LSTM (DWT-LSTM) 0.2437; LSTM 1.2547; RNN 1.2467; GRU 1.2334; neuro-fuzzy technique 
0.1146), proving that this ensemble model could accurately predict power generation.
 GBR is a ML algorithm frequently used for dealing with regression tasks and comprises a 
combination of gradient descent and boosting algorithms. GBR is constructed as a strong learner 
using the prediction results of multiple weak learners, and maintains nonlinear relationships 
between data. For instance, Persson et al.(26) adopted gradient-boosted regression trees to predict 
the power generation of different solar plants and compared their power generation; in the 1–6-
hour power generation forecast, the normalized root mean squared errors for all power plants 
were between 0.100 and 0.137. In addition, GBR uses the regularization techniques to avoid the 
problem of overfitting and has good robustness in processing outliers.
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 In this study, after we conducted an extensive literature research on solar power generation 
prediction, we found that in most of the studies, statistical models, ML models or hybrid 
techniques were adopted for power generation prediction, all of which have good prediction 
accuracy. In particular, the accuracy of power generation prediction using hybrid techniques or 
ensemble models is relatively high and superior to that of a single prediction model. The 
advantage of SVR is that data can be projected to high dimensions by the use of kernel functions, 
which can effectively grasp the nonlinear relationship between features, thereby improving the 
accuracy of model prediction. LSSVR employs a squared-loss function that can simplify the 
problem of model optimization and has a good ability to deal with noise data and outliers, 
enhancing the model robustness. LASSO is a regularization regression model, characterized by 
its ability to handle the multi-collinearity problem between features, and is suitable for features 
with low-dimensional dense characteristics. RIDGE is a linear regression technique that 
combines feature selection and regularization. Meanwhile, it can also deal with the phenomenon 
of model overfitting. Considering the above descriptions, in this study, we planned to use these 
four superior models as the base learners of the ensemble model. Therefore, after considering 
two factors—the overfitting problem and generalization performance of the prediction model—
we tested the prediction abilities of SVR, LSSVR, LASO and RIDGE models with the k-fold 
CV, and then we constructed an ensemble model. Additionally, we used GBR as the final 
predictor as well as the output results of power generation prediction.

3. Methodology

 In this section, first, we explain the structures and operating principles of the MDC and the 
real-time monitoring system for solar power generation (RMSP) built in this study. Next, we 
elaborate on the four independent models (including SVR, LSSVR, LASO, and RIDGE) and the 
solar power generation prediction model—RGEM—proposed in this study.

3.1 MDC and RMSP framework

 The MDC mainly applies three communication protocols—RS485, Modbus RTU, and 
message queuing telemetry transport (MQTT)—to transmit information. Modbus RTU is used 
to receive data from different sensors (such as the PM2.5 sensor, temperature and humidity 
sensor, solar panel current sensor, solar panel surface temperature sensor, solar radiation sensor, 
and cup-type wind velocity sensor). RS485 is used as the interface between Modbus RTU and 
Raspberry Pi. Since the outputs of each sensor are the analog values of voltage and current, data 
exchanges among devices need to be carried out by Modbus RTU. MQTT, mainly used for the 
connection between Raspberry Pi and the recipient computer, is a machine-to-machine 
communication protocol. After the data are received by MQTT, the data are stored in the 
InfluxDB TSDB through Node-Red and JavaScript programs, and finally, the data are displayed 
through Grafana. The complete MDC hardware structure and the adopted sensors are shown in 
Fig. 1.
 The design principle of our RMSP was developed using the Laravel web application 
framework and Vue.js framework. Firstly, the embedded system of Raspberry Pi collects data 
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from the inverter, and all data are stored through the system API. Next, the Docker container 
technology is employed to divide all assignments of the system and put each of them into 
respective containers. In each container, the data are stored in the form of Queue, and in the 
InfluxDB TSDB, the real-time data are broadcast to each user; then, real-time images are sent 
by video streaming (RTMP). Lastly, relevant information is given to the users. The above steps 
are shown in Fig. 2. 
 The front-end of RMSP mainly uses Vue for screen layout and design, while the back-end 
incorporates PHP Laravel with MySQL and InfluxDB for transfer and storage of the overall 

(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 1. (Color online) (a) Left view of MDC, (b) top view of MDC, (c) PM2.5 sensor, (d) temperature and humidity 
sensor, (e) solar panel current sensor, (f) solar panel surface temperature sensor, (g) wind velocity sensor, (h) solar 
radiation sensor.
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data. For the warning message prompt function, LINE API is applied for notification. When the 
system detects an abnormality or the hardware temperature becomes too high, the system will 
automatically send a warning message to the administrator through LINE. In addition, this 
system carries out real-time monitoring of the solar hardware equipment using the video 
streaming server, the Raspberry Pi embedded system, and the Raspberry Pi Camera V2 of the 
embedded system.
 In the main system of RMSP, Ubuntu is used as the operating system in the bottom layer of 
the server, and the system is divided into several subsystems and distributed to each Docker 
container, in order to protect the functioning of each system. In this way, when one of the 
systems malfunctions or stops, the operation of other systems will not be affected, and the 
systems can run more efficiently. The main system uses Nginx as the web server software. In 
addition to stability and high efficiency, Nginx has another feature, that is, there are many 
additional modules that provide a better structure for Nginx, allowing others to write modules 
for it as well as expand or strengthen its original function. In the main system, different tasks are 
divided into different subsystems through the Redis cache database software. As a medium for 
distributing tasks, Redis is a fast, open-source key-value data structure storage area in the 
random-access memory. The data broadcasting of RMSP is connected with users using the 
WebSocket protocol and is responsible for releasing the latest data to the users’ front-end. In the 
Laravel module, the Laravel-Echo-Server, the server system for data broadcasting, not only 
works with Laravel’s user authentication and private channels but also allows the bottom layer to 
be written by Node.js, so it supports the cross-platform setup. Users can obtain webpage content 
through HTTP and then connect the Laravel Echo Server with the WebSocket written in 
Javascript in the website. The Laravel Echo Sever will verify users’ information with the Laravel 
main system, and finally, messages will be broadcast to Redis by the Laravel main system. Next, 
the Laravel Echo Sever will send the published messages to the users. The main duty of the job 
worker in RMSP is to perform the tasks proposed by the system, because the system will assign 
each job to a different queue and write it into Redis. Then, the job worker will read the assigned 
job from Redis and process it in the back-end. Different job workers can handle jobs such as data 
writing, data publication, data verification, and other data-related issues separately. The function 

Fig. 2. RMSP framework, in which the Docker container technology can provide safer and faster information 
systems development and deployment.

http://Node.js
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expansion of RMSP is very flexible. As long as more sensors are connected to the system, the 
data can be displayed in the front-end of the system in real time. The solar monitoring system is 
developed on the basis of the above design principles, as shown in Fig. 3, where the upper half of 
Fig. 3(a) shows the real-time examination of several important types of data (voltage, current, 
and power), the day’s power generation, the week’s power generation, the month’s power 
generation, the year’s power generation, and the weather conditions, such as solar radiation, 
temperature, and wind speed of the day. The lower half presents the real-time power generation 
and the day’s power generation as a line graph and bar graph, respectively. Figure 3(b) reveals 
the detailed information of the inverter and other information of hardware equipment, such as 
AC power, battery, temperature, and status of the fan. At the same time, the system provides a 
warning reminder. Any abnormal state of the hardware device can be learned from the instant 
message displayed in the LOG block. If the hardware device is abnormal, we can know the 
content of the abnormal status through the message displayed by this function and immediately 
notify maintenance personnel to fix it.

3.2 Regression-based algorithm 

 Given that the prediction accuracy of a prediction model using a regression algorithm needs 
to be enhanced, feature selection must be carried out first, and then, the data dimension must be 
lowered before data preprocessing. Next, feature scaling or feature standardization is necessary. 
The main purpose of feature selection is to improve the performance of the ML model and 
reduce the complexity of the model. For example, the PCA can be used to reduce the dimensions 
of features. Feature scaling and feature standardization are two techniques widely used to 
convert features into common scales. Feature scaling can convert feature values into a specific 
numerical range, such as between 0 and 1, which is highly suitable for dealing with large changes 
in the range of feature values; this common technique resembles min-max scaling. Feature 
standardization can convert features into a mean of 0 and a standard deviation of 1 to ensure that 
all features are on the same scale; Z-score normalization is one of the common standardization 

(a) (b)

Fig. 3. (Color online) Front-end screen displays of RMSP.
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methods. After the features are processed by feature selection, feature scaling, or feature 
standardization, they can be adopted in different prediction models as independent variables or 
dependent variables for different purposes of forecasting. 
 SVR is an extended model of SVM. SVM is mainly used to solve the classification problem. 
Through the optimization of its objective function, the best hyperplane with the best boundary, 
or the maximum boundary, can be found to classify data into two categories, and its hyperplane 
can also maximize the margin of errors and minimize the training errors, thereby reducing the 
generalized errors as well as increasing the generalization performance of the model. What is 
commendable about SVR is that it projects data into a high dimension with the kernel function 
and then searches for the hyperplane, so it can handle the nonlinear relationship between 
independent variables and dependent variables, where data not linearly separable can be 
classified.
 In this study, the independent variable of the training set 1{( , )} ,  ,N d

i i i i ix y x R y R= ∈ ∈ , was 
x = [Solor irradiance, Ambient temperature, PV temperature], the dependent variable was 
y = [Solor Power], and the linear function of the training set was f(x) = wTxi + b. The main 
purpose of the objective function of SVR is to find a regression model whose hyperplane has the 
minimum data error and the maximum margin of error, as shown in Fig. 4, where w means the 
weight of the feature, b represents the bias term, the upper and lower boundaries of the 
hyperplane are f(x) = wTxi + b + ε and f(x) = wTxi + b − ε, {+ε, −ε} means the acceptable data error 
of the linear function to the boundary, and {ξi, ξi

*} refers to the deviation of the data outside the 
soft-margin range. The slack variable ξ can be used to determine the amount of data outside the 
hyperplane. The optimization problem and constraints of SVR are expressed as

 2 *
1

1min || || ,2
N

i ii
w C ξ ξ

=
+ +∑  (1)

subject to 
 yi − wTφ(xi) ≤ ε + ξi

*, i = 1, ..., N,

 wTφ(xi) − yi ≤ ε + ξi
*, i = 1, ..., N,

Fig. 4. Hyperplane of SVR, which can maximize the margin of error of the data.
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 ξi, ξi
* ≥ 0, i = 1, ..., N, 

where C denotes a regularization parameter, which can be used to adjust the weights between the 
margin and the error of the hyperplane. The larger the value of C, the greater the weight given to 
the model to diminish the error. φ(xi) is the kernel function. The optimization process of Eq. (1) 
can be derived using the Lagrangian function, Lagrange multipliers, and the quadratic 
optimization problem. The dual problem can also be derived by applying Karush–Kuhn–Tucker 
(KKT) conditions.(27) The derived result is expressed as

 * *
1

( ) ( ) ( ), ( ) , , [0, ],SVN
i i i i ii

f x x x b Cα α ϕ ϕ α α
=

= − + ∈∑  (2)

where NSV is the number of support vectors, {αi, αi
*} refers to Lagrange multipliers, and 

αi, αi
* ≥ 0. In accordance with Mercer’s condition, the inner product of ( ), ( )ix xϕ ϕ  is calculated, 

and the dot product of the feature vectors in the high dimension can be computed using the 
kernel function K(x, xi).(28) Finally, the predicted value of the latest data can be obtained after the 
calculation by using the trained weight vectors and the error term b.
 LSSVR is an extended model of LSSVM. The optimization problem and constraints of 
LSSVR are expressed as

 2 2
1, ,

1 1min ( , ) || || ,2 2
N

iiw b e
J w e w eγ

=
= + ∑  (3)

subject to 

 yi = wTφ(xi) + b + ei, i = 1, ..., N. 

 In Eq. (3), the problem can be simplified by equality constraints and the least squares 
approach, in which ie R∈  represents the error variables of the data and γ denotes the 
regularization constant where γ ≥ 0. If γ is large, it will lead to a decrease in the complexity of 
the model, which means that the low fitting level of the training data decreases. Similarly, the 
optimization process of Eq. (3) can solve the dual problem using Lagrangian function and 
Lagrange multipliers,(29) and the result is 

 
1

( ) ( ), ( ) ,N
i ii

f x x x bα ϕ ϕ
=

= +∑  (4)

where αi represents Lagrange multipliers and b denotes the bias term. The calculation of the 
inner product of  ( ), ( )ix xϕ ϕ  can be replaced by the kernel function K(x, xi), in order to speed up 
the calculation efficiency. Common kernel functions include:
(1)  Linear Kernel: ( ), ,i iK x x x x= ,
(2) Polynomial Kernel: ( ), , ,d

i iK x x x x d N= ∈ ,
(3)  Gaussian Kernel (also called Radial Basis Function Kernel, RBF):

( ) ( )2 2
2, exp / 2 ,i iK x x x x σ= − −
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(4) Sigmoid Kernel: K(x, xi) = tanh(αxTxi + C), α > 0, C > 0,
(5) Chi-squared Kernel: 2( , ) exp( ( ) / ( ))i i iiK x x x x x xγ= − − +∑ .
 The efficiency of LSSVR in model training is higher than that of SVR. The reason is that the 
optimization problem is simplified by equality constraints and the least squares approach. As a 
result, faster model training efficiency can be achieved. The approach used to minimize the 
regression error is the least squares approach, instead of the margin-based approach adopted by 
SVR. In other words, LSSVR uses the least squares loss function rather than ε-insensitive loss 
function. Therefore, the training process of the LSSVR model is faster than that of the SVR 
model.
 The LASSO model is a linear regression technique that combines feature selection and 
regularization and can handle the phenomenon of model overfitting; this is suitable for features 
with high-dimensional sparse characteristics. In the linear regression model, ordinary least 
square (OLS) is the most commonly used estimation method of model coefficients, but the major 
problem for OLS is that overfitting easily occurs with this model. Consequently, LASSO adds a 
penalty term to the objective function of OLS to adjust the complexity of the model. The 
objective function of OLS is shown as 

 ( )
0

2
01,

1min ( ) ,N T
i ii

y xNβ β
β β

=
− −∑  (5)

subject to 

 
1

,P
jj

tβ
=

≤∑  

where yi is the dependent variable, xi
T means features, and β is the vector of coefficients of the 

model. OLS employs a method of minimizing the data error to carry out the estimation of the 
model parameters, so that overfitting easily occurs. If multi-collinearity exists among features, 
then there is a great impact on the prediction accuracy of the model. LASSO is based on OLS 
and adds penalty items to adjust the complexity of the model and reduce the feature dimension. 
The objective function of LASSO is shown as 

 ( ){ }
0

2
01 1,

1min ( ) ,N PT
i i ji j

y xNβ β
β β λ β

= =
− − +∑ ∑  (6)

where the first term refers to the OLS loss function, the second term is the L1 penalty term, and 
λ is the regularization parameter, which is used to control the strength of the penalty term. If λ is 
larger, it indicates a stronger penalty for coefficients, which means that more coefficients will be 
forced to be zero and features that have a stronger influence on the model can be selected. In 
other words, it will reduce the complexity of the model. The adjustment of the λ value can be 
accomplished by means of CV or using information criteria such as the Akaike information 
criterion (AIC) or Bayesian information criterion (BIC). An optimal λ value can lead to better 
generalization performance.(30)

 RIDGE is a type of regularization regression model and is characterized by its ability to 
handle the multicollinearity problem among features as well as its suitability for features with 
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low-dimensional dense characteristics. RIDGE is very similar to LASSO. However, since the 
penalty term is calculated as the sum of the squared coefficients, the selection of features cannot 
be performed. RIDGE’s difference from LASSO is that an L2 penalty term is added to the 
objective function to avoid overfitting and overcomplexity of the model,(15) as shown by

 ( ){ }
0

2 2
01 1,

1min ( ) ,N PT
i i ji j

y xNβ β
β β λ β

= =
− − +∑ ∑  (7)

where the first term refers to the OLS loss function, and the second term denotes the L2 penalty 
term. The L2 penalty term is the sum of squared feature coefficients, and λ is used to control the 
strength of the penalty term. When λ = 0, it means that only OLS is employed to estimate the 
coefficients, which is the coefficient estimation procedure applied by general regression models. 
Nevertheless, when λ = ∞, it indicates that the coefficient estimation procedure will set all 
coefficients to zero. The smallest residual sum of squares (RSS) can be estimated through OLS, 
which implies that when the RSS is relatively large, the strength of the penalty term must be 
increased to achieve a balance between the RSS and the penalty term. The optimization process 
of RIDGE is intended to minimize the OLS and the L2 penalty term as well as estimate better 
coefficients of β̂  so as to increase the accuracy of the model.

3.3 Proposed model 

 In this study, we proposed a solar power generation prediction model, namely, RGEM, which 
is a stacked generalization model. This model uses the meta-learning algorithm as the learning 
algorithm. The stacking model combines the prediction results of different base learners, and 
finally, the meta-model outputs the final prediction result. RGEM employs a two-layer 
architecture to conduct model training and testing. Level One performs training and k-fold CV 
of four base learners (SVR, LSSVR, LASSO, and RIDGE). We adopted GBR as the meta-model, 
so the meta-model was trained and tested through Level Two. The framework of RGEM is 
depicted in Fig. 5.
 In Fig. 5, the original data 1{( , )} ,  ,N d

i i i i ix y x R y R= ∈ ∈  after data preprocessing is divided into 
training dataset D and testing dataset E; in Level One, the k-fold CV is used to train and test four 
base learners, respectively, and the generated prediction results, called Meta-X,  are retained and 
can be used as the training dataset of the meta-model. The calculation process is shown by Eq. 
(8). In Level One, the trained base learners test the model with the original testing dataset, and 
the generated prediction results, called Meta-Y, are retained after the mean is calculated, and can 
be used as the testing dataset of the meta-model. The calculation process is shown by Eq. (9). 
Finally, the meta-model will use Meta-X for model training and Meta-Y for model prediction.

 ( )1 1
( ) ( ),M K

Meta X m km k
f D f D− = =

=∑ ∑  (8)

 Here, D indicates that the training dataset is divided into k-fold data groups, for example, in 
5-fold CV,D = {d1, ..., dk | k = 5}; D(k) refers to the data of the validation set in the 5-fold CV. m 



Sensors and Materials, Vol. 36, No. 1 (2024) 81

denotes the base learner. Therefore, through the calculation of Eq. (8), the predicted values and 
feature values of all base learner validation sets can be obtained and used in the training of the 
meta-model.

 1

1( ) ( ),M
Meta Y mm

f E f E
M− =

= ∑  (9)

E represents the testing datasets provided to each base learner. Consequently, via the calculation 
of Eq. (9), the average predicted values and feature values of all base learner testing datasets of 
can be obtained and regarded in the testing of the meta-model.

3.4 Model performance evaluation

 After the ML model is built up, evaluation metrics are usually required to test its overall 
prediction error or classification error, in order to verify and ensure the performance of the 
model. In this study, MSE, RMSE, the coefficient of determination (R-square or R2), and MAPE 
were used as the performance indicators of four independent models (SVR, LSSVR, LASSO, 
and RIDGE) and the RGEM stacked generalization model, as expressed below:

 2
1

1 ˆ( ) ,N
i ii

MSE y y
N =

= −∑  (10)

 2
1

1 ˆ( ) ,N
i ii

RMSE y y
N =

= −∑  (11)

Fig. 5. The two-layer stacked generalization model adopted in this study uses the datasets (Meta-X and Meta-Y) 
generated by Level One for training and testing of the meta-model.
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where yi, ŷi, and y̅ i respectively represent the observed (or actual) value of the target variable, the 
predicted value of the target variable, and the average of the target variable. N refers to the 
number of instances of features. Both MSE and RMSE are commonly used evaluation metrics of 
model prediction error. However, since RMSE is the square root of MSE, it is sensitive to large 
errors. R2 is widely applied as a performance index of the regression model. In statistics, it 
implies that the proportion of the variances of the dependent variables can be explained by the 
independent variables in the model. In other words, R2 can be used to evaluate the explanatory 
power of the model, and the value of R2 ranges from 0 to 1; the larger the value, the better the 
goodness of fit of the model. MAPE is an indicator (metric) of the prediction accuracy of the 
model. It is expressed as a percentage in the range from 0 to infinity. Generally speaking, when 
the MAPE value of the model is less than 10%, the prediction ability of the model is “highly 
accurate forecasting”; when the MAPE value is between 10% and 20%, the prediction ability of 
the model is “good forecasting”; when the MAPE value is between 20% and 50%, the prediction 
ability is “reasonable forecasting”; when the MAPE value is greater than 50%, the prediction 
ability of the model is “inaccurate forecasting”.(31)

4. Experimental Results

4.1 Data description

 Since 2017, this study has be a part of the solar data transmission and analysis cooperation 
project of adiCET (Asian Development College for Community Economy and Technology), 
Chiang Mai Rajabhat University, Thailand. Therefore, we use the data of the 702 kW solar power 
experiment field (latitude 19.024293°N, longitude 98.940272°E) built by the adiCET for model 
training and testing.
 The data were collected from 09:00 to 16:00 every day (the interval of data sampling was 15 
min) between January 1 and November 30, 2021, for a total of 9,687 raw data values. The 
specifications for the data collection were solar power (kW), solar radiation (W/m2), ambient 
temperature (℃), and PV panel surface temperature (℃) (the significant features influencing 
power generation forecasting have been explained in the first section), as shown in Fig. 6. Figure 
6(a) shows the raw data sets of solar power generation used in this study, and Figs. 6(b) to 6(d) 
indicate raw data sets of solar radiation, ambient temperature, and PV panel surface temperature, 
as well as their correlations with solar power generation.
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4.2 Data preprocessing

 To enhance the training and testing accuracy of the ML model, data preprocessing is a 
necessary task, including data cleaning, feature selection, and data normalization. The purpose 
of data cleaning is to eliminate noisy data, missing values, and outliers as well as to avoid 
incorrect data analysis results. When outliers appear in the data, the data can only be deleted 
from the statistical point of view or by judgment based on professional experience. Feature 
selection can reduce the complexity of the model and improve computing performance. The 
most commonly used feature selection technique is Pearson correlation analysis, which evaluates 
the linear relationship between variables by calculating the covariance and standard deviations 
between variables. In this study, after the data were preprocessed, the amount of data in the solar 
power generation database used in this study decreased from 9,687 to 9,147. Figure 7 displays the 
results of the Pearson correlation analysis on the significant factors adopted in the prediction 
model of this study. The results of Pearson correlation analysis of the raw data are illustrated in 
Fig. 7(a), in which solar power and solar radiation show a positive correlation of 0.90, solar power 

(a) (b)

(c) (d)

Fig. 6. Solar power generation data and three significant features affecting the power generation of solar PV 
panels.
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and ambient temperature a positive correlation of 0.63, and solar power and PV panel surface 
temperature a positive correlation of 0.57. The Pearson correlation analysis after the raw data 
were processed by data cleaning is displayed in Fig. 7(b), where solar power and solar radiation 
show a positive correlation of 0.92, solar power and ambient temperature a positive correlation of 
0.73, and solar power and PV panel surface temperature a positive correlation 0.68. The results 
of comparison revealed that all the dependent variables and the independent variables have 
strong positive correlations. In particular, solar power and solar radiation have stronger linear 
relationships than other variables. 
 The purpose of data normalization is to convert the raw data into a standard format or scale, 
so that the data of different scales or units can be standardized and the consistency of the data 
can be retained as well. By doing so, the performance of the model can be boosted to ensure the 
reliability of the output results of the model. Common data normalization techniques include 
Min–Max scaling and Z-score standardization. We adopted the Min–Max scaling technique to 
convert the data to the range between 0 and 1. The mean and the standard deviation were applied 
to the data conversion process of Z-score standardization. When the data has outliers, converting 
the data range using the Z-score standardization is not recommended.

4.3 Results and discussion

 The solar power generation database adopted in this study had a total of 9,147 data after data 
preprocessing, and the 5-fold CV was used for model training and evaluation, so that CV could 
more accurately explain the generalization performance and robustness of the model. During the 
experiment, R2 (actual solar power versus predicted solar power) of each base learner in the 
model training phase and testing phase was higher than 0.84, indicating a better model 
performance of RGEM than those of the four independent models, as shown in Fig. 8, where (a) 

Fig. 7. (Color online) Pearson correlation analysis of significant factors: (a) Pearson correlation of the raw data; (b) 
Pearson correlation after the raw data were processed by data cleaning.

(a) (b)
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(a) (b)

(c) (d)

(e)

Fig. 8. RGEM stacked generalization model and R2 of base learners in the model testing phase: (a) SVR, (b) 
LSSVR, (c) LASSO, (d) RIDGE, and (e) RGEM.
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shows R2 = 0.8555 for SVR in model testing, (b) shows R2 = 0.8529 for LSSVR in model testing, 
(c) shows R2 = 0.8445 for LASSO in model testing, (d) shows R2 = 0.8626 for RIDGE in model 
testing, and (e) shows R2 = 0.8797 for the stacked generalization model (the proposed RGEM) in 
model testing.
 In the RGEM architecture, the base learners in Level One performed model training and 
testing by 5-fold CV, and the prediction results using validation sets for model prediction were 
retained as model training conducted by the meta-model in Level Two. After each base learner 
completed model training and testing, it carried out model forecasting using the test data kept in 
the solar database again, and its prediction results were retained to compute its mean for model 
testing performed by the meta-model in Level Two. In other words, the data evaluated by the 
base learners in Level One of RGEM became more accurate, and were then used for model 
training and testing of the meta-model in Level Two, and the final prediction results were output. 
Therefore, RGEM was able to calculate more accurate forecasting results for solar power 
generation. Figure 9 shows the residual plot of the final prediction results of RGEM using the 
solar power generation database of this study. There is no obvious trend or pattern in the residual 
plot. This means the model has a high goodness of fit, but there are two possible outliers that 
must be re-evaluated. Figure 10 shows the prediction results of RGEM (comparisons between 
observed values and predicted values), where R2 = 0.8797, MSE = 0.0050, RMSE = 0.0706, and 
MAPE = 0.0966.
 The benefit of the stacked generalization model is to combine several base learners to make 
predictions and generate new data. Consequently, if a base learner cannot provide more accurate 
data, the influence of its error value will be diminished by the data generated by other base 
learners. In addition, looking upon the stacked generalization model from the point of view of 
data search, each base learner generates new data in the process of model testing after model 
training, which means it is possible to avoid finding a local solution. Better predicted values are 
then provided to the meta-model for model training, giving the meta-model the opportunity to 
find a global solution, thereby advancing the generalization performance of the final model. In 

Fig. 9. Residual plot of the final prediction results of RGEM, indicating goodness of fit.
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Table 1, the prediction performance of all base learners is good; among them, RIDGE performs 
the best in the model training and testing phases (training MAPE = 0.1075 and testing MAPE = 
0.1076). After the different kernel functions used by SVR and LSSVR are tested, the results 
demonstrated that the MAPE value of the RBF kernel function is lower than other kernel 
functions, indicating that the model has a better prediction ability. Thus, the base learners (SVR 
and LSSVR) in RGEM adopt the RBF function for data conversion. With the help of base 
learners, the influence of data errors is reduced. Therefore, after combining the advantages of 
base learners, RGEM can have better prediction performance (training MAPE = 0.0916 and 
testing MAPE = 0.0966) as well as reduced prediction error (training MSE = 0.0044 and testing 
MSE = 0.0050).We also compared RGEM with other stacking models. For example, Rahimi et 
al.(14) pointed out that, in their research, the RMSE prediction error values of the ensemble model 
using WD-ANN and WD-BCRF were 0.1966 and 0.3212, respectively. In addition, Amarasinghe 
et al.(24) adopted DBN, SVR, and random forest as base learners, used DBN again as a meta-
model, and applied 30 weather parameters as input features of the model (e.g., relative humidity, 
total cloud cover, and solar radiation) through the procedure of feature selection. The 
experimental results of this study indicated that while the power generation was being predicted 
in 21 different solar power plants, the RMSE prediction error values of the stacking model 
ranged from 0.0393 to 0.1046, and the RMSE average error was 0.0636. However, when different 
weather factors (e.g., clear, partly cloudy, and overcast) were also considered, the experimental 
results of this study showed that when the weather factor was “clear”, the average RMSE error of 
the prediction model was 0.0592, which is a significantly reduced forecast error. Consequently, 
variations in weather factors can be incorporated into the prediction model in future research on 
solar panel power generation prediction in order to raise the prediction accuracy of the model.

Fig. 10. (Color online) True values and final prediction results of RGEM, where R2 = 0.8797, MSE = 0.0050, RMSE 
= 0.0706, and MAPE = 0.0966.
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5. Conclusions

 The research topics of renewable energy have been widely valued in various countries, 
especially in the research field of solar PV power generation. However, the power dispatch 
between the power generated by traditional power plants and the power generated by solar PV 
power plants has played a relatively important role in effective power distribution. Efficient solar 
power dispatch is strongly dependent on accurate solar power generation forecasting techniques. 
Driven by this knowledge, we was aimed at developing an accurate power forecasting model and 
a mobile data collection device with IoT sensors. Different regression models were tested, and 
finally, the architecture of RGEM was built on the basis of the stacked generalization model to 
boost the forecasting accuracy of power generation. The contribution of this study is in (1) 
constructing a MDC to collect the data of weather factors using different sensors and developing 
a RMSP for real-time data display and data storage of solar power generation, and (2) presenting 
and building a stacked generalization model combining four different base learners for solar 
power generation prediction. The solar power generation database employed by this study came 
from the solar power plant of adiCET of CMRU, Thailand. The total power generation of the 
power plant was 702 kW, and the data of power generation and weather factors were recorded 
every 15 minutes. When the data preprocessing was carried out at the power plant, null values 
and abnormal values were found. It was judged that these were generated by bad sensors. 
Therefore, the values were deleted, and the final number of data sets was 9,147. The RGEM 
model proposed in this study combined four different base learners, SVR, LSSVR, LASSO, and 
RIDGE, for collaborative training and prediction. Compared with the traditional linear 
regression model, SVR has greater robustness in dealing with outlier problems, and LSSVR has 
better computational efficiency; LASSO pushes unimportant feature coefficients toward 0 via 
L1 regularization, automatically performs feature selection, and can handle the problem of 
multi-collinearity. Also, RIDGE improves the stability and generalization performance of the 
model via L2 regularization and can also deal with the problem of multi-collinearity. As a result, 

Table 1
Performance of stacking and each base learner.

Hyperparameters Training Testing
R2 MSE RMSE MAPE R2 MSE RMSE MAPE

SVR

kernel: RBF
C = 10.0

gamma = 0.1
tol = 0.01

0.8560 0.0056 0.0752 0.1200 0.8555 0.0057 0.0753 0.1202

LSSVR
kernel: RBF

C = 10.0
gamma = 0.1

0.8531 0.0059 0.0769 0.1097 0.8529 0.0059 0.0770 0.1099

LASSO alpha = 1.0
tol = 0.01 0.8446 0.0061 0.0783 0.1193 0.8445 0.0061 0.0784 0.1193

RIDGE alpha = 1.0
tol  = 0.01 0.8628 0.0054 0.0736 0.1075 0.8626 0.0054 0.0737 0.1076

Stacking 
(RGEM)

Loss = 
‘squared_error’ 0.8934 0.0044 0.0665 0.0916 0.8797 0.0050 0.0706 0.0966
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after integrating the advantages of these four base learners, RGEM had improved overall 
prediction accuracy and better model generalization performance. In the evaluation and 
comparison of single prediction models, RIDGE was found to perform the best in the model 
training and testing phases (training MAPE = 0.1075 and testing MAPE = 0.1076). The average 
15-min-ahead MSE error of the RGEM architecture was 0.0011 lower than those of other single 
prediction models in the model training phase and 0.0008 lower than those of other single 
prediction models in the model testing stage. Moreover, MAPE in both model training and 
testing phases was less than 0.1, showing that RGEM is a prediction model with high accuracy.
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