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	 In this study, we focus on creating a precise servo feed drive model to estimate the servo 
gains and the mechanical dynamics. Traditionally, manufacturers of machine tools rely on 
empirical methodologies to facilitate the development of new products. However, the emergence 
of Industry 4.0 prompted a shift towards virtual machine tool technology to assist product 
development management. The complete servo feed drive system comprises two integral 
components: the servo control system and the feed drive mechanism. In this study, we propose a 
discrete model for the servo control system to enhance the accuracy of the virtual digital model. 
when subjecting the real system to frequency sweep tests, particle swarm optimization (PSO) is 
employed to identify the parameters of the servo controller in the model. We observe tracking 
errors in the servo control system to validate the discrete model, and the predicted tracking 
errors closely match the experimental values, with the difference being within 2%. Furthermore, 
we consider external loads and couplings as the feed drive mechanism. We create a dual mass-
spring-damping model to simulate the complete servo feed drive system. The digital model 
proposed in this paper can accurately predict the load inertia with an error of only 1.5% 
compared with the experimental values. In summary, we present a servo feed drive model for 
machine tools, enabling the estimation of external loads and couplings in a virtual environment. 
The advantages are reduced energy consumption, development time, and costs during product 
development.

1.	 Introduction

	 Most machine tool manufacturers traditionally develop new products on the basis of 
empirical methods and design new products through a process of trial and error, which is not 
only time-consuming but also costly. In recent years, with the emergence of Industry 4.0, 
technologies such as cyber physical systems and digital twins have found widespread application 
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in the machine tool industry. With this trend, numerous research studies on the development of 
virtual machine tool technology with the primary objective of reducing both the development 
time and associated costs of machine tools have been actively conducted. Beyond enabling the 
preproduction estimation of machine performance through simulation, these technologies also 
facilitate smart manufacturing simulation and the optimization of machining parameters. This 
study is dedicated to the development of virtual machine tool technology, including the 
establishment of accurate servo drive control models and the simulation of the machine’s 
dynamic characteristics.
	 With the continuous improvement in computer processing power and escalating competition 
in the machine tool industry, the traditional approach of relying on empirical methods and trial 
and error for new product development has gradually transformed into leveraging computer 
simulation analysis to aid in design and development processes. Altintas et al.(1) proposed the 
concept of virtual machine tool (VMT) technology, wherein machines are modeled as digital 
models, facilitating predictive analysis of precision performance under such design scenarios 
through computer simulations. In instances where performance deviates from the expectation, 
immediate design modifications can be made, thereby conserving both the cost required for 
prototype manufacturing and the time expended on testing. The VMT technology lies in the 
precise establishment of digital models. When delving into discussions on machine tool dynamic 
accuracy, the servo feed system for each axis emerges as the primary source of influence. To 
accurately forecast machine performance, a reliable servo feed model is required.(2) Servo feed 
models must factor in various phenomena,(3) including the rigid body dynamics of the feed 
system,(4) friction within the feed system,(5–7) low-frequency resonance modes,(8,9) and the 
backlash of the feed drive mechanism.(10,11) Erkorkmaz and Wong(12) mentioned commonly 
employed servo loop models. These models can be broadly categorized into two control 
architectures. While these models account for friction phenomena in the feed system, they 
assume the current loop as 1. Matsubara et al.(13) established a servo loop model comprising 
current loops, velocity loops, and position loops. Sato(14) proposed a model composed of three 
layers of loops, considering phenomena such as friction, feed mechanism resonance, current 
saturation, and sensor resolution. Poignet et al.(15) considered the servo loop processing cycle 
and the lag stemming from signal sampling, by discretizing the continuous model and 
representing it in the z-domain. Regarding system identification, Saarakkala and Hinkkanen(16) 
employed PRBS signals as the excitation signals for identification experiments, which can 
broadly be categorized into three types: open-loop, direct closed-loop, and indirect closed-loop 
identification. The model parameters were determined using the input and output data acquired, 
employing the least squares method.(16,17) Erkorkmaz and Wong(12) provided a brief random NC 
code to induce rapid movements within a confined range for the test system, and the model 
parameters were determined using the least squares method after capturing the input and output. 
Subsequently, Wong and Erkorkmaz(18) employed the same excitation method but utilized a 
genetic algorithm for parameter identification, asserting that genetic algorithms expedite and 
enhance the accuracy of parameter identification. Chen et al.(19) sidestepped the nonlinear 
distortion of analog signals during analysis by utilizing square wave signals instead of traditional 
analog signal inputs. Ma et al.(20) divided the servo system into linear and nonlinear combinations 
during the identification process and established linear and nonlinear models separately. Two 
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distinct square wave signals were utilized as excitation sources, and the differential analysis of 
these signals was employed to estimate the system’s linear model. The magnitude of dynamic 
friction was ascertained from experimental data collected during constant velocity segments.
	 In the majority of research endeavors, the establishment of continuous models is a common 
practice for servo feed systems. However, the continuous model represents an idealized model, 
assuming that controllers operate with infinitesimal time intervals. Actually, it is essential to 
acknowledge the practical constraints within real systems, where controllers necessitate finite 
computation time. Therefore, the primary objective of this study is to propose the development 
of a discrete model, thereby addressing these practical limitations and enabling the establishment 
of a robust servo control system.
	 The servo feed drive system presented in this paper is composed of a servo control system 
and a feed drive mechanism. In Sect. 2, we begin by deriving the servo loop model for the servo 
control system, encompassing both continuous and discrete models. The external load inertia is 
deduced as the feed drive mechanism, leading to the derivation of the dual mass-spring-damping 
model. The experimental method and system identification theory are introduced in Sect. 3. 
Section 4 presents the experimental results and discussion, including model validation, and 
estimation of external load and coupling parameters using the discrete model. Finally, a 
conclusion is provided in Sect. 5.

2.	 Cutting Principles and Experimental Setup

	 The servo feed drive system is a crucial component in machine tools, composed of a servo 
control loop and a feed drive mechanism. In high-speed machining, the impact of high 
acceleration and deceleration motion thrust on processing performance is more significant than 
that of cutting forces. In this section, we begin by deriving the model of the servo control system, 
which is divided into continuous and discrete models. Subsequently, the feed drive mechanism is 
simplified into a dual mass-spring-damping system, combining it with the servo control loop to 
establish a complete servo feed drive system.

2.1	 Servo control system–continuous model

	 A typical servo control system comprises a multilayer closed loop, as illustrated in Fig. 1. The 
innermost current loop drives the actuator, and the plant generates a response in the velocity 

Fig. 1.	 Schematic diagram of experimental setup.
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loop upon the instruction of the actuator. In this study, the plant is defined as the motor shaft 
mechanism. The outermost position loop is fed back by the position sensor. To guarantee system 
stability, the controller of each loop is suitably adjusted. The common controllers of the servo 
loop of the CNC machine tools mostly use a proportional (P)–integral (I) controller. In each 
loop, according to the difference between the input and output signals, the output signal is 
corrected by adjusting the PI controller so that the system responds accurately. A position loop 
controller (Kp) is usually a simple P controller, named position proportional gain (Kpp). A 
velocity loop controller (Kv) is a PI controller, named velocity proportional gain (Kvp) and 
velocity integral gain (Kvi). A commercial driver that allows the user to set the current loop 
controller (Ki) is not available. On the other hand, the current loop has a larger bandwidth than 
the other loops. Herein, the transfer function of the current loop (Gi) is set as a low-pass filter in 
this study.

	
1
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G
T s

=
+

	 (1)

	 Where, Tc is a time constant. When Tc becomes smaller, the system exhibits a higher 
bandwidth and a faster response. 
	 Figure 2 shows the block diagram of the velocity loop that includes the current loop controller 
and motor model. The transfer function of the motor model (Gm) is
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where the motor model includes the inertia moment (Jm) and viscous friction coefficient (Bm) of 
the shaft. The input of the current loop is the current command (ic), and the output is the angular 
velocity of the motor (ωm). Hence, ic multiplied by Gi and torque constant (Kt) is the motor torque 
(Tm). Tm is applied to the motor shaft mechanism, and the motor shaft is rotated. ωm is obtained 
through the motor shaft mechanism. The input of the velocity loop is the velocity command (ωc). 
ic is obtained after Kvp and Kvi of Kv are calculated, and ωm is exported from Gm as the feedback 
signal of the velocity loop. Therefore, the transfer function of the velocity closed loop (Gv) is
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Fig. 2.	 Block diagram of velocity loop.



Sensors and Materials, Vol. 35, No. 12 (2023)	 4463

	 Figure 3 shows the block diagram of the position loop. The input is the position command (θc) 
after toolpath planning. Through Kpp of the position controller, ωc is obtained for the velocity 
loop. The rotational angle of the motor (θm = ωm/s) after the integration of ωm is used as the input 
of the rotating transmission mechanism, where θm can be regarded as the displacement output of 
the motor shaft mechanism and is detected by the motor encoder. The transfer function of the 
position closed loop (Gp) is

	
/

1 /
pp vm

p
c pp v

K G s
G

K G s
θ
θ

= =
+

.	 (4)

2.2	 Servo control system–discrete model

	 The continuous model derived in the previous section represents an idealized model, wherein 
the controller computes with infinitesimal time intervals and the sensor operates with an 
infinitely high sampling frequency. In actuality, controllers require finite computation time, and 
sensors have limited sampling rates. These limitations result in a delayed response of the system. 
Therefore, in this paper, we propose the development of a discrete model for establishing a servo 
control system. In this section, we shall discuss converting a  continuous-time  system  into 
a discrete-time system. 
	 Figure 4 is a typical discrete control system, where the input signal [r(t)] is processed through 
a digital controller, resulting in the output signals [û(t)]. In the diagram, G(z) represents the 
discrete controller, and “Clock” signifies the processing period of the discrete controller and the 
sampling period of the sensor. The analog-to-digital converter (A/D) and the discrete controller 
compute r(k) from r(t) as the output. The difference between r(k) and y(k) is then processed by a 

Fig. 3.	 Block diagram of position loop.

Fig. 4.	 A typical discrete control system.
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digital-to-analog converter (D/A) and a zero-order hold (ZOH) to convert the discrete signal 
[u(k)] into a continuous signal [û(t)]. û(t) is fed into the “Plant” to produce the response ŷ(t), 
which is obtained through a sensor sampling process to yield u(k). Since the plant is a continuous 
model, in this paper, we represent the process of obtaining y(k) from the input u(k) as an 
equivalent transfer function [H(z)], as illustrated in Fig. 5.
	 The control system can be discretized by various methods, such as the Tustin method, 
matched pole-zero method, and the forward Euler rule. In this study, the forward Euler rule is 
employed for discretizing the integrator, and the relationship between the s-domain and 
z-domain is expressed as

	
1

s

zs
T
−

= ,	 (5)

where Ts represents the processing period of the controller. Next, the continuous model derived 
in the previous section is discretized. The discrete velocity loop model is derived in this section, 
and the transfer function of the discrete PI controller model [Kv(z)] is obtained as
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Owing to the significantly faster processing rate of the current loop compared with the velocity 
loop, it is assumed in this study that the current loop is a continuous system. Subsequently, by 
referring to the block diagram of the continuous velocity loop model in Fig. 2, the output of the 
velocity PI controller is discretized to obtain the discrete response of the motor’s velocity. The 
result of discretizing the plant is
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Fig. 5.	 Discretization of the continuous model of the plant.
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where
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	 Figure 6 represents the block diagram of the discrete model of the velocity loop. The closed-
loop transfer function from the input ωc(z) to the output ωm(z) is given by
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After substituting Eqs. (6) and (7) into Eq. (8), and the transfer function of the discrete velocity 
loop is 
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where

	 1 1 1b a= − ,
	 2

2 1 2t vp sb K K T a a= − + , 
	 ( )2

3 2t s vi s vpb K T K T K a= − − .

	 In this study, the processing period Ts serves as the processing period for both the velocity 
loop and the position loop. Position is calculated by accumulating velocity and feedback to the 
controller, as illustrated in Fig. 7. The closed-loop transfer function from the input θc(z) to the 
output θm(z) is 
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After substituting Eq. (9) into Eq. (10), the transfer function of the discrete position loop becomes 
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where
	 1 1 1d b= − , 
	 2 2 1d b b= − , 
	 3

3 2 3pp t vp sd K K K T b b= − + , 
	 ( )3

4 3pp t s vi s vpd K K T K T K b= − − .

2.3	 Deduction of dual mass-spring-damping system

	 The feed drive mechanism is simplified into a dual mass-spring-damping system in this 
study. This system is useful for estimating the inertia moment (JL) of the external loads outside 
the servo loop, as well as the stiffness (Kc) and damping (Cc) of the coupler. The motor torque Tm 
drives the rotation of the motor shaft with the inertia moment Jm, resulting in a rotational angle 
θm. Assuming a negligible rotational inertia moment of the coupling, Tm is transmitted through 
the coupling to drive the JL of external loads, causing a rotational angle θL, as illustrated in Fig. 
8.
	 According to Fig. 8, the equations of motion for the motor rotor and external load are

	 ( ) ( )
¨

mm c m L c m L m m mT K C J Bθ θ θ θ θ θ − − + − = + 
   ,	 (12)

	 ( ) ( )
¨

Lc m L c m L LK C Jθ θ θ θ θ− + − =  .	 (13)

Fig. 6.	 Block diagram of discrete velocity loop.

Fig. 7.	 Block diagram of discrete position loop.
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We develop a block diagram of the dual mass-spring-damping system based on Eqs. (12) and 
(13), as illustrated in Fig. 9.
	 Owing to the feedback signals of the motor speed ωm and motor rotational angle θm in the 
experimental platform, on the basis of the block diagram in Fig. 9 and Mason’s gain formula, the 
transfer function from the motor torque Tm as input to the motor speed ωm as output can be 
derived as

	 ( ) ( ) ( )
2

3 2
m L c c

m L m m c L c c m m L c

J s C s K
T J J s B C J s C K B J J K
ω + +

=
+ + + + + +

.	 (14)

Combining the servo control system derived in the previous section with the dual mass-spring-
damping model derived in this section allows for the further estimation of the parameters JL, Kc, 
and Cc via the practical testing.

3.	 Experimental Method

3.1	 Experimental setup

	 The experimental platform is a servo control system, as illustrated in Fig. 10. The control 
system adopts a commercial controller (0i-MF, Fanuc Corporation), and the process employs a 
servo motor and driver, which are also produced by Fanuc Corporation. The servo motor 
parameters Kt and Jm from Eq. (7) can be obtained from the motor specification sheet, where 
they are represented as 1.2 Nm/A and 0.0126 kgm2, respectively. In this study, the experimental 
platform is developed for system identification, and a swept signal is used as the input. At the 
same time, the motor encoder is measured as the output. According to the frequency responses 
and the block diagram of the discrete model shown in Fig. 6, the system transfer function can be 
obtained by curve fitting. The parameters of the discrete model from Eqs. (6)–(11) are estimated 
by the system identification method.
	 To analyze the impact of external loads on the servo control system, we designed three types 
of load block, as illustrated in Fig. 11. The load inertia ratio represents the ratio of the load 
block’s rotational inertia to the motor’s inertia. In this study, the planned load inertia ratios for 
the external loads are 0.5, 1.0, and 1.5. The testing setup for the dual mass-spring-damping 

Fig. 8.	 Lumped model representation with the dual mass-spring-damping system.
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system involves connecting the motor shaft to a coupling and then attaching the load block. To 
reduce the bearing load on the motor shaft, we designed an adjustable-height fixture to support 
the load block, as illustrated in Fig. 12. The coupling used in this setup is from ROTEX, the GS 
series, with the model number GS28-98-A-2.5.
	

Fig. 9.	 Block diagram of dual mass-spring-damping system.

Fig. 10.	 (Color online) Experimental platform of servo-control system.

Fig. 11.	 (Color online) Three external load blocks for experiments. 
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3.2	 System identification method

	 To estimate the unknown parameters of the discrete model, the servo control system is 
excited with an input signal, and the motor’s output response data is measured. Particle swarm 
optimization (PSO) is then employed for curve fitting to determine the unknown parameter 
values.
	 PSO originated from the study of bird foraging behavior, where researchers observed that 
when one or a few birds find food, they would guide other birds in their direction. If each bird is 
treated as a particle, when one particle gets closer to the best solution, all particles tend to move 
in its direction, gradually converging towards the best solution. Since PSO not only considers 
information from the group but also uses its own information, it helps avoid getting stuck in 
local minima. Therefore, it is widely used in various optimization applications across different 
fields. To formalize this concept into mathematical equations, each particle has its current 
position and velocity. The best particle within the group is determined on the basis of the fitness 
function value. Then, each particle updates its flight velocity in accordance with its own inertia, 
individual experience, and group experience. The relationship between particle velocity and 
position updates can be expressed as 

Fig. 12.	 (Color online) Experimental platform with the dual mass-spring-damping system.
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	 ( ) ( ) ( ) ( ) ( ) ( )1 1 2 21i i i i g iv k Wv k c r p k x k c r p k x k + = +  −  + −    ,	 (15)

	 ( ) ( ) ( )1 1i i ix k x k v k+ = + + ,	 (16)

where
	 vi(k + 1) is the velocity of particle i at time k + 1,
	 W is the inertia weight,
	 c1 and c2 are acceleration coefficients,
	 r1 and r2 are random values between 0 and 1,
	 pi(k) is the best position found by particle i up to time t,
	 pg(k) is the best position found by any particle in the group up to time t,
	 and xi(k + 1) is the position of particle i at time k + 1.
	 This update process is iteratively performed until convergence to find the optimal solution. 
The optimal solution defined in this study is the one where the root mean square error (RMSE) 
of the fitness function is minimized, which is expressed as

	 ( )2

1Fitness Function
ˆN

i ii
y y
N

=
−

= ∑ ,	 (17)

where
	 yi is the output from the actual system,
	 ŷi is the output from the discrete model of the servo control system,
	 N is the number of samples, and
	 i is the i-th sample.
	 PSO is particularly useful for optimizing functions or models where traditional gradient-
based methods may not be applicable.

4.	 Results and Discussion

	 The identification process of the servo control loop proceeds from the innermost loop, which 
is the current loop, followed by the velocity loop, and finally, the position loop. In this study, the 
current loop is simplified as a low-pass filter with only Tc requiring parameter estimation. 
Therefore, the current loop and velocity loop are identified together to obtain Kvp, Kvi, and Tc via 
the PSO method. Next, the identification process continues with the position loop to determine 
Kpp. Finally, external loads are introduced as part of the feed drive mechanism. In addition to 
identifying the load inertia and coupling stiffness, the effectiveness of the dual mass-spring-
damping system is further validated.
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4.1	 System identification of velocity loop

	 The driver generates a sinusoidal waveform as an excitation signal, which is then used as the 
input. This signal is imported into the velocity command within the driver, and the output is 
obtained using the motor encoder. A mathematical model is constructed to represent the system’s 
transfer function. Subsequently, PSO is employed to identify the unknown parameters (Kvp, Kvi, 
and Tc) in the discrete velocity loop’s transfer function [Eq. (9)], with Ts set to 1 ms. Figure 13 
shows the convergence of the fitness function values, showing that convergence is achieved after 
60 iterations, with an RMSE of only 0.4462. Table 1 provides the actual values and the estimated 
parameter results. By substituting the identified parameters into Eq. (9), the system’s transfer 
function can be expressed as

	 ( ) ( )
( )

6 6

3 2

3.322 10 2.951 10
11.001 20.996 8.995

m
v

c

z zG z
z z z z

ω
ω

− −× − ×
= =

+ − +
.	 (18)

	 Figure 14 shows the results of the experiment and simulation. The red line represents the 
experimental data, whereas the blue line represents the curve fitted using the PSO parameter 
estimation. The experimental results demonstrate that the discrete model adequately reproduces 
the system’s response within a 500 Hz bandwidth. The errors between the experimental and 
estimated values for the parameters Kvp and Kvi are both within 4%.

4.2	 System identification of position loop

	 When identifying the position loop, the parameters Kvp and Kvi of the velocity loop are kept 
unchanged. The position control in this study employs a simple proportional controller, denoted 
as Kpp in Fig. 7. Typically, the frequency range of interest for the position loop response is within 
200 Hz, and a higher Kpp results in a wider bandwidth and reduced phase lag. Figure 15 
illustrates the convergence of the fitness function, which occurs after 10 iterations, with an 
RMSE of only 0.0725. Table 2 presents the actual values and parameter estimates. Substituting 
the identified parameters into Eq. (11) yields the transfer function of the system as

	 ( ) ( )
( )

8 8

4 3 2

9.767 10 8.678 10
10.001 31.996 29.991 8.995

m
p

c

z zG z
z z z z z

θ
θ

− −× − ×
= =

+ − + −
.	 (19)

	 Figure 16 depicts the results from experiments and simulations, where the red line represents 
experimental data, and the blue line represents the curve fitting results obtained through PSO 
parameter estimation. The experimental results demonstrate that the discrete model adequately 
captures the system’s response within the 200 Hz range, with the error between the experimental 
and estimated values for Kpp being within 2%.
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Fig. 13.	 (Color online) Convergence of fitness function in discrete model identification.

Fig. 14.	 (Color online) Experimental and simulation results for velocity loop.

Table 1
Parameter estimation results for discrete velocity loop model.

Kvp Kvi Tc
Actual 2.662 297.00 —
Estimation 2.768 308.57 0.0001



Sensors and Materials, Vol. 35, No. 12 (2023)	 4473

4.3	 Validation of servo control system in time domain

	 The validation of the servo control system is performed through a back-and-forth motion with 
a 100 mm travel distance using G code. The error between the position command and the 
position feedback, known as tracking error, is observed. The test conditions involve the same 
Kpp but different feed rates, specifically, 3000 and 5000 mm/min. The results from both 
experiments and simulations are presented in Fig. 17, where the red line represents the 
experimental data, and the blue line represents the curve fitting results. The experimental results 
indicate that as the feed rate increases, the tracking error also increases. In Fig. 17(a), with a feed 
rate of 3000 mm/min, the tracking error during constant velocity segments is approximately 
1.8%. In Fig. 17(b), with a feed rate of 5000 mm/min, the tracking error during constant velocity 
segments is approximately 2.0%.
	 Subsequently, the feed rate remains at 3000 mm/min, while the position proportional gains 
are varied to 30 and 50. Figure 18 illustrates the tracking error under these different conditions, 
where the red line represents experimental results, and the blue line represents the curve fitting 
results. The experimental data indicate that as the position proportional gain increases, the 
tracking error decreases. As shown in Fig. 18(a), with a position proportional gain of 30, the 
tracking error during the constant velocity segment is approximately 1.8%. In Fig. 18(b), with a 
position proportional gain of 50, the tracking error during the constant velocity segment is also 
approximately 2.0%.
	 The validation results indicate that the identified servo control model exhibits a time-domain 
tracking error of within 2% compared with experimental values, under various position gains 
and feed rates. Furthermore, this demonstrates that increasing the feed rate and position gain can 
effectively reduce tracking errors.

Fig. 15.	 (Color online) Convergence of fitness function in discrete model identification.

Table 2
Parameter estimation results for discrete position loop model.

Kpp
Actual 30.000
Estimation 29.405
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4.4	 Testing of load inertia and coupling stiffness

	 Load inertia estimation is essential for constructing a comprehensive digital model of the 
servo feed drive system. In fact, load inertia estimation using a digital model in a virtual 
environment enables gain adjustments for the servo loop before actual machine setup. The 
complete servo feed drive system consists of both the servo control system and the feed drive 
mechanism. In this study, the controlled plant is simplified as a dual mass-spring-damping 
system. Additionally, we designed three inertia blocks to represent the feed drive mechanism. 

Fig. 17.	 (Color online) Tracking error analysis for different feed rates: (a) 3000 and (b) 5000 mm/min.

(a) (b)

Fig. 16.	 (Color online) Experimental and simulation results for the position loop.
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Figure 19 presents bode plots of the velocity loop for different load inertia ratios, specifically, 
0.5, 1.0, and 1.5. From the experimental results, it is evident that as the load inertia ratio 
increases, the bandwidth of the velocity loop decreases.
	 First, experimental results with a load inertia ratio of 0.5 are utilized for parameter estimation 
using PSO, resulting in the determination of model parameters for the dual mass-spring-damping 
system, including the coupling stiffness Kc, coupling damping Cc, and external load JL. These 
obtained model parameters are then substituted into Eq. (14), and the fitted curve is compared 
with the experimental results, as illustrated in Fig. 20. Table 3 presents the discrepancy between 
theoretical and estimated values for the load and coupling. The error between the designed and 
estimated values of external load is approximately 1.5%. The manufacturer’s catalog provides a 
coupling stiffness value of 9920 Nm/rad, with an error of approximately 10.8% compared with 
the design and estimation values. However, there is no available design value for the coupling 
damping, and its estimated value through identification is 1.
	 Next, the coupling parameters Kc and Cc are set to 11000 and 1, respectively. The load inertia 
ratios of 1.0 and 1.5 are designed as inputs to the feed servo drive model. The velocity loop 
responses for different load inertia ratios are observed and compared with experimental results. 
Table 4 presents the results for designed and estimated load inertias. When the load inertia ratio 
is 1.0, the predicted load inertia is approximately 1.5% different from the design value. When the 
load inertia ratio is 1.5, the error in predicted load inertia compared with the design value is 
about 0.5%.
	 In this paper, we propose the establishment of a digital model for the complete servo feed 
drive system using the identification of experimental results with a load inertia ratio of 0.5. This 
identification process yields the parameters Kc and Cc of the coupling and provides an estimation 
of the load inertia. Subsequently, the estimated coupling parameters are incorporated into the 
model, and the model is validated with different load inertia ratios. The experimental results 
demonstrate that the digital model developed in this study can predict various load inertias 
accurately and also verify the correctness of the coupling parameters.

Fig. 18.	 (Color online) Tracking error analysis for different position proportional gains. (a) Position proportional 
gain of 30 (b) Proportional gain of 50.

(a) (b)
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Fig. 20.	 (Color online) Experimental and simulation results for load inertia ratio of 0.5.

Fig. 19.	 (Color online) Velocity loop bode plots for different load inertia ratios.
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Table 3
Discrepancy between theoretical and estimated values.

JL Kc Cc
Theoretical value 6.3 × 10−4 9920 —
Estimated value 6.4 × 10−4 11000 1

Table 4
Theoretical and estimated load inertias for different load inertia ratios.

load inertia ratio of 1.0 load inertia ratio of 1.5
Theoretical value 1.26 × 10−3 1.89 × 10−3

Estimated value 1.28 × 10−3 1.90 × 10−3

5.	 Conclusions

	 In machine tool development, manufacturers have been entrenched in time-consuming and 
empirical methods, characterized by iterative trial-and-error product development approaches. 
However, the emergence of Industry 4.0 has precipitated a shift within the machine tool 
development, leading to the widespread adoption of virtual machine tool technology while 
expediting product development, minimizing costs, and saving energy.
	 In this study, the digital model of the servo feed drive system for a machine tool, as well as a 
strategy to improve the modeling accuracy, was investigated. The work encompassed the 
construction of a servo control model that replicates an actual controller-driver-motor system 
and the assessment of external loads and couplings via a simplified dual mass-spring-damping 
model. The conclusions can be summarized as follows.
(1)	�Concerning the finite processing times and sensor sampling rates within practical servo 

control loops, in this study, we presented a more precise discrete model instead of the 
commonly used continuous model.

(2)	�The position loop controller and the velocity loop controller of the servo control model were 
identified by PSO.

(3)	�To validate the servo control model under various feed rates and position gains, we showed 
that this model has the capacity to reduce tracking errors effectively by elevating feed rates 
and position gains.

(4)	�The incorporation of a dual mass-spring-damping system completes the servo feed drive 
model. The experimental results demonstrated the model’s precision in predicting various 
load inertias and validating the coupling parameters.

	 In this study, we proposed a digital model for the servo feed drive system, including the 
discrete model for the servo control system and the dual mass-spring-damping system for the 
feed drive mechanism. The proposed method will be applied to various types of machine tool 
with translation axes. In addition, the digital model will be investigated in order to analyze the 
behavior of translation axes.
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