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	 The integrated energy system is a perfect way to realize the transformation of the traditional 
energy industry structure. To further explore the role of its load-side adjustable potential in 
carbon emission reduction, an optimal operation model of the integrated energy system 
considering the carbon emission sensing measurement system and demand response (DR) is 
proposed. First, the integrated electricity–heat energy system (IEHS) model framework is 
constructed in accordance with the coupling characteristics of electricity–heat–gas in the 
system. The carbon emission sensing measurement system is introduced on the energy supply 
side, and DR is considered on the user load side, including the DR model based on the price 
elasticity matrix and the replacement-based DR model considering the mutual conversion of 
electric and thermal energies on the energy use side. Second, the baseline method is used to 
allocate carbon emission quotas for the system free of charge, and the actual carbon emissions of 
gas turbines and gas boilers are considered. An IEHS objective function is established to 
minimize the sum of the energy purchase, carbon transaction, and operation and maintenance 
costs. Third, an improved northern goshawk optimization (INGO) algorithm is proposed to 
optimize the low-carbon operation of the IEHS model. Finally, the effectiveness and 
practicability of the proposed model and algorithm are verified using different scenarios and 
different algorithms. The results show that, considering the carbon emission sensing 
measurement system and DR, the total operation cost is reduced by 10.4% and the actual carbon 
emission is reduced by 6420.582 kg. Compared with those of the northern goshawk (NGO) 
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algorithm, the total operation cost of the INGO algorithm is reduced by 9.4% and the actual 
carbon emission is reduced by 1164.253 kg, which realizes the coordinated operation of system 
economy and low carbon emission.

1.	 Introduction

	 The structure of the energy industry has gradually shifted to the high efficiency and 
environmental protection direction, showing two major characteristics of renewable energy 
access and diversified power load. The proposal of a “double carbon” target has brought new 
challenges to the energy and power industry and is the main force behind pollutant emission 
reduction. On the one hand, renewable energy, represented by photovoltaic (PV) and wind 
turbine (WT) energy, has developed rapidly, and the ratio of clean energy to primary energy has 
increased. However, the output of clean energy has the characteristics of randomness and 
uncertainty, which make the light curtailment and wind curtailment phenomena serious. The 
reasonable storage of residual energy is the key to dealing with these problems. On the other 
hand, in the context of building a novel type of system, the energy structure has undergone a 
major transformation.(1) With the advancement of energy conversion technology and the iterative 
innovation of conversion equipment, the barriers of multiple heterogeneous energy subsystems 
are gradually being overcome.(2) An integrated energy system can effectively solve the energy 
crisis, realize multi-energy coupling, and achieve the targets of carbon dioxide emission 
reduction.(3)

	 In the face of the current situation, the coupling relationship between a variety of energies 
and an integrated electricity–heat energy system (IEHS) needs to be further elucidated, and the 
carbon emissions of different equipment need to be reduced. The carbon emission sensing 
measurement system can not only improve resource allocation, but also enhance energy 
conversion and emission reduction.(4) If this mechanism is introduced in IEHS, it can make 
carbon emission rights (CERs) a schedulable resource with economic value. In addition, for the 
energy supply load demand sides in the IEHS model, the introduction of demand response (DR) 
can improve the two-way interaction between these sides. At present, most of literatures are 
analyzed from the aspect of maximizing the economic interests of IEHS and less consideration 
is given to energy conversion and pollutant emission,(5) and the conventional algorithm may lead 
to the lack of global search and optimization abilities in the multi-energy flow coupling 
operation of IEHS. Therefore, it is necessary to find an efficient and accurate solution method 
and apply it to the economic operation of IEHS multi-energy flow coupling.
	 Regarding the utilization of the carbon emission sensing measurement system and DR in 
IEHS, Zheng et al.(6) presented a particle swarm optimization (PSO) algorithm based on chaos to 
realize the optimal scheduling of the integrated energy system under the high volatility of 
renewable energy load. In contrast to the traditional PSO algorithm, the economic cost was 
increased by 3.868%, and the stability of the comprehensive operation was guaranteed. However, 
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the optimal scheduling of the integrated energy system only considers the economic cost and 
fails to consider the environmental benefits. Yao et al.(7) studied the dynamic capacity flow 
analysis model and method of the power and heat networks in an integrated energy system, and 
solved the high-dimensional discretization model through a decomposition-iteration algorithm, 
which simplified the model operation process and improved the calculation accuracy of energy 
flow. Aiming at the complex energy coupling and source-load uncertainty in integrated energy 
system dynamic scheduling, Xu and Xiang(8) proposed an optimal scheme in accordance with 
determination strategy gentrification algorithms and verified the stability and applicability of 
the algorithms. Deng et al.(9) constructed an integrated energy system effective scheduling 
model with wind and solar energy storage. The comprehensive operation cost was considered in 
the objective function, and an improved krill herd algorithm was utilized to optimize the 
dispatch model, which improved the energy utilization and economy. However, the objective 
function considered is relatively simple. In contrast to the original algorithm, the computational 
capabilities of the improved krill herd algorithm need to be further explored.
	 To reasonably solve the problems of IEHS operation optimization, we effectively reduce the 
general economic cost and carbon emission, and improve the evolution of the carbon economy 
and the permeation rate of new energy. Using the carbon emission sensing measurement system 
and DR, the IEHS low-carbon economic model is constructed. The improved northern goshawk 
optimization (INGO) algorithm is selected to obtain the optimal scheme for the optimization of 
the IEHS economic operation. The results of the model are also compared and analyzed for 
various scenarios. The main contributions are as follows.
1.	 A carbon emission sensing measurement system is considered in the IEHS model to increase 

the economic cost of IEHS and reduce the carbon emission of the system.
2.	 Price- and replacement-based DRs are considered on the load demand side. Consequently, the 

load fluctuation is stabilized and a stable operation of the IEHS low-carbon economy is 
realized.

3.	 An INGO algorithm is proposed to increase convergence speed and convergence accuracy, 
and enhance the optimization ability, and it is applied to the IEHS model, whereby the 
optimal dispatch solution is obtained.

4.	 A variety of cases with different scenarios of the same algorithm and different algorithms of 
the same scenario are compared to prove the effectiveness and practicality of the proposed 
IEHS model and INGO algorithm.

	 The remaining sections are organized as follows. In Sect. 2, we construct the IEHS model 
framework, including the energy-supply-side carbon emission sensing measurement system 
model and the user-load-side demand response model. In Sect. 3, we optimize the operation of 
the IEHS model, including the construction of the IEHS operation objective function and the 
proposal of an INGO algorithm. In Sect. 4, we use regional cases to analyze the optimization 
results of the IEHS low-carbon economic operation, and we provide the conclusions and future 
research directions.
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2.	 Integrated Electricity–heat Energy System

2.1	 Structure of IEHS 

	 In this study, the IEHS model framework shown in Fig. 1 is constructed. Electric and gas 
energies are offered by a superior grid and a gas network, respectively, and natural gas is 
purchased for the combined heat and power (CHP) and auxiliary energy supply equipment gas 
boiler (GB). When the power is in excess or insufficient, it is sold to or purchased from the 
superior grid, respectively.(10) The energy coupling devices include PV, WT, CHP, GB, and heat 
pump (HP), where CHP includes a waste heat boiler (WHB), a gas turbine (GT), and the Organic 
Rankine Cycle (ORC) system and operates as a thermal-electrolytic decoupling system, whereas 
HP and GB consume the power produced by PV and WT and bear part of the thermal load. 
Owing to the volatility of PV and WT power generation, energy storage devices, including a 
battery (BAT) and a heat storage tank (HST), are added to IEHS to realize the time and space 
transfer of energy in different periods.(11) In addition, considering the DR strategy enables the 
smooth adjustment of the load profile for peak shaving and valley filling.(12) The structure of the 
IEHS model is shown in Fig. 1.(13–15)

2.2	 Model of demand response 

	 The DR characteristics are divided into two types: one based on the response of price changes 
and another based on the response of policy incentives.(16)

Fig. 1.	 (Color online) Diagram of IEHS frame structure.
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2.2.1	 Price-based DR

	 On the basis of the reasonable time-of-use electricity price, price-based DR guides users to 
change the behavior of electricity consumption independently and reduce or transfer the 
nonessential load.(17) Regarding the effect of price fluctuation, the users’ electricity consumption 
behavior will also change to a certain extent. It is necessary to establish a price-based DR model 
of electricity load affected by price to determine the load transfer situation. The electricity price 
elasticity matrix effectively represents the sensitivity of users’ electricity consumption to the 
time-of-use price, and it has the characteristics of wide use, accurate description, and strong 
evaluation. Therefore, in this study, we use the electricity price elasticity matrix to establish a 
model, as shown in 
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Here, Pc(i, i) and Pc(i, j) are self-elasticity and its coefficient, respectively. Pi and ΔPi represent 
the amount of electrical load before DR and the amount of load change after DR at time i, 
respectively. Ci and ΔCi represent the electricity prices before DR and after DR at time i, 
respectively. Cj and ΔCj are the electricity prices before DR and after DR at time j, respectively.
	 The self-elasticity coefficient is the main diagonal element, the cross-elasticity coefficient 
represents other elements,(18) and the electricity price elasticity matrix is indicated as

	
, , ,

, , ,

, , ,

c pp c pf c pl

c fp c ff c fl

c lp c lf c ll

P P P
P P P
P P P

 
 =  
  

PC ,	 (3)

where p represents the peak period of load, f represents the trough period of load, and l represents 
the normal period of load. Therefore, the final established price-based DR model is 
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Here, Pp, Pf, and Pl are the average loads of each period after the price-based DR, Pp,0, Pf,0, and 
Pl,0 are the average loads of each period before the price-based DR, Δcp, Δcf, and Δcl represent 
the changes in electricity price in each period after DR, and cp,0, cf,0, and cl,0 represent the 
electricity prices before the adoption of time-of-use electricity price, which can be regarded as 
unified prices.
	 The price-based DR load is divided into curtailable and shiftable loads, and two types of load 
are modeled separately as follows.
	 The mathematical model corresponding to the curtailable load after considering DR is 

	 ( ) ,0CL CL CLP t P M∆ = + .	 (5)

Here, ΔPCL(t) is the amount of variation of curtailable load after considering DR, PCL,0 is the 
initial curtailable load, and MCL is the electricity price elasticity matrix corresponding to the 
curtailable load.
	 The mathematical model corresponding to the shiftable load after considering DR is 

	 ( ) ,0SL SL SLP t P M∆ = + ,	 (6)

where ΔPSL(t) is the amount of variation of shiftable load after considering DR, PSL,0  is the 
initial shiftable load, and MSL is the electricity price elasticity matrix corresponding to the 
shiftable load.

2.2.2	 Replacement-based DR

	 The mathematical model corresponding to the replaceable load is 

	 ( ) ( )e e
RL RL

h h

P t H tε
ε

∆ = − ∆



,	 (7)

where ΔPRL(t) and ΔHRL(t) are the replaceable electric load and the corresponding replaced 
thermal load, respectively. εe  and εh are the unit calorific values, and ϵe and ϵh are the energy 
utilization rates.

2.3	 Model of carbon emission sensing measurement system

2.3.1	 Model of free carbon emission quota

	 The carbon emission quota is allocated in accordance with the total equivalent calorific 
value, as shown below.
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	 ( ) ( ) ( ) ( )2,0CO GT GT GBE t H t P t H tρ θ=  + +   	 (8)

Here, ECO2,0(t) is the carbon emission quota of the system, ρ  is the carbon emission allocation of 
electricity in the region, which is taken to be 0.57 t/(MW·h), and θ is the conversion coefficient 
of electricity.

2.3.2	 Model of carbon emission cost

	 The actual carbon emission in IEHS is the sum of GT and GB:

	 ( ) ( ) ( ) ( )2,CO a GT GT GT GB GBE t H t P t H tϑ θ ϑ=  +  +  ,	 (9)

where ECO2,α(t) is the actual carbon emission, and ϑGT and ϑGB are the carbon emission 
coefficients of GT and GB, respectively.

2.3.3	 Model of stepped carbon emission trading

	 The amount of carbon emission trading is obtained as 

	 ( ) ( ) ( )2, 2,0IEHS CO a COE t E t E t= − ,	 (10)

where EIEHS(t) is the carbon emission trading volume of IEHS at time t.
	 The corresponding mathematical model is
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Here, CCO2(t) is the stepped carbon trading cost, β is the base price, φ is the interval length, and 
τ is the price growth rate.

3.	 IEHS Operation Optimization

	 On the basis of the above IEHS model, the objective function composed of three parts of cost 
and four constraints are constructed. In addition, the INGO algorithm is selected to solve the 
IEHS model to obtain the scheduling scheme.(19) The process of IEHS operation optimization is 
shown in Fig. 2.
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3.1	 Objective function

	 Regarding the IEHS model, the authors consider the comprehensive operation cost to promote 
the optimization of the low-carbon economic operation of the system. In this study, a time of one 
day is selected as the research period, and the minimum sum of the power grid interaction and 
fuel cost, the carbon trading cost, and the equipment investment and operation cost are 
considered in the objective function to construct the following IEHS operation optimization 
model:

Fig. 2.	 (Color online) IEHS operation optimization diagram.
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	 minf = f1 + f2 + f3.	 (12)

Here, f is the total cost of the IEHS operation optimization, f1 is the power grid interaction and 
fuel cost, f2 is the carbon trading cost, and f3 is the equipment investment and operation cost.

3.1.1	 Power grid interaction and fuel cost

	 The cost of power grid interaction and fuel includes the cost of IEHS interaction with the 
power grid and the cost of fuel consumption. The mathematical model is 

	 1 Grid Fuelf C C= + ,	 (13)
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Here, CGrid and CFuel are the cost of the IEHS interaction with the power grid and the cost of fuel 
consumption, respectively. T is the operation cycle, and kbuy and ksell are the unit prices of 
electricity purchased and sold by the superior grid, respectively. Pbuy(t) and Psell(t) are the power 
purchase and power sales of IEHS, respectively. cg is the natural gas price and Gbuy(t) is the total 
amount of gas purchased by IEHS.

3.1.2	 Carbon trading cost

	 The carbon trading cost is the sum of all costs in an operating cycle, and the mathematical 
model is 

	 ( )2 2
1

T

CO
t

f C t
=

=∑ .	 (15)

Here, CCO2(t) is the stepped carbon trading cost.

3.1.3	 Equipment investment and operation cost

	 The mathematical model is 

	 3 inv opef C C= + ,	 (16)
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Here, Cinv and Cope are the investment and operation costs of the IEHS equipment, respectively. 
μ(r, l) is the depreciation coefficient, xi is the number of type i equipment, Pi is the output power, 
N is the number of different equipment types, and ci

inv and ci
ope are the investment and operation 

costs of type i equipment, respectively. 

3.2	 Constraint condition

	 The energy balance constraints are shown as
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Here, PEL,0(t) and PHL,0(t) are the electric and thermal loads at time t before considering DR, 
respectively.

3.3	 Solution method

	 The swarm intelligence optimization algorithm is an algorithm that enhances the search 
ability of the solution space in a certain range by simulating the motion and behavior rules of 
some animals or things in nature and optimizing their target in a random manner. Such 
algorithms have attracted the research interest of scholars from various fields and countries. 
Particle swarm optimization (PSO), whale optimization algorithm (WOA), and ant lion 
optimization (ALO) have been proposed to solve various optimization problems in various 
fields.(20) 
	 Dehghani et al.(21) was inspired by the behavior of northern goshawks capturing prey. In 
2022, a novel intelligent optimization algorithm, the NGO algorithm, was proposed. Its principle 
is easy to understand, and it also has certain advantages in terms of the convergence speed of the 
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algorithm. However, there are some shortcomings in convergence accuracy; their final targets 
easily fall into a local optimum resulting in increased errors and deviation from the real 
results.(22) Therefore, in this paper, we improve the original NGO algorithm and verify its 
performance through test functions. The INGO algorithm is as follows.

3.3.1	 Bernoulli chaotic mapping

	 The chaotic mapping formula is shown as

	
( ) ( ]
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w w
w

w w

h p h p
h

h p p h p+
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where hw is the chaotic value of wth and p is the chaotic parameter.

3.3.2	 Sine-cosine oscillation variation

	 The sine-cosine oscillation variation comes from the sine-cosine algorithm (SCA), and the 
objective function is repeatedly solved in accordance with the oscillation variation of the sine-
cosine model. The sine-cosine oscillation variation is introduced in the first stage of the NGO 
algorithm, which improves the ability of global optimization and local search, and the 
corresponding mathematical model update formula after improvement is shown as
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Here, ω1 is the improved step search factor, δ is the adjustment coefficient with δ ≥ 1, 
ω1 ∈ [0, 2π], which controls the moving distance of the northern goshawk, and ω3 ∈ [0, 2], which 
controls the position update of the northern goshawk.

3.3.3	 Dynamic inertia weighting factor

	 On the basis of Eq. (22), the dynamic inertia weighting factor is added to change the search 
mode of northern goshawks, thereby accelerating the speed of searching the global space.(23) The 
mathematical model corresponding to the dynamic inertia weighting factor is introduced as 
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Here, θ represents the dynamic inertia weighting factor, where both θ1 and θ2 are weight 
parameters.

3.3.4	 Lévy flight strategy

	 To prevent the northern goshawk from falling into the local optimal solution, which leads to 
premature convergence and failure to reach the optimal solution, the Lévy flight strategy is 
introduced in the second stage to the improve the performance of NGO. (24) The corresponding 
mathematical model is 
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Here, ⊕ is the point multiplication operation, L is the step control coefficient, and L(λ) is the path 
function, which is usually simulated using the Mantegna algorithm. The method of setting the 
step size is 

	 1/
1 2/step γα α= .	 (27)

Here, γ is a constant and set to 1.5, α1 and α2  are random values that follow a normal distribution, 
and their variance is
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	 The flow of the improved algorithm is shown in Fig. 2.
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4.	 Case Analysis

4.1	 Basic data

	 An industrial park in northern China is taken as the research object, with 24 h as the 
operation cycle.(25) The model of IEHS that considers DR is built using MATLAB R2020a 
software.

4.2	 Analysis of results

4.2.1	 Comparative analysis of different scenarios of the same algorithm

	 In this paper, the INGO algorithm is selected for the comparative analysis of the following 
four different scenarios:
Scenario 1: Neither the carbon emission sensing measurement system nor DR are considered. 
Scenario 2: Only the carbon emission sensing measurement system is considered. 
Scenario 3: Only DR is considered.
Scenario 4: Both the carbon emission sensing measurement system and DR are considered.
The operation costs and carbon emissions of the four scenarios are shown in Table 1.
	 Table 1 shows that, in comparison with those of scenario 1, the carbon emission cost of 
scenario 2 is decreased by 53.9% and the actual carbon emission is diminished by 4884.543 kg. 
Compared with scenario 1, scenario 2, which considers the emission sensing measurement 
system, has reduced carbon emission and decreased operation costs. In comparison with that of 
scenario 1, the energy purchase cost of scenario 3 is reduced by 6.25%, which is due to the 
consideration of DR to reduce the peak load and increase the valley load. In comparison with 
those of scenarios 2 and 4, the total operation cost, carbon trading cost, and actual carbon 
emission of scenario 3 are high, which indicates the favorable effect of the carbon trading 
mechanism. The total operation cost, energy purchase cost, carbon trading cost, and actual 
carbon emission of scenario 4 are relatively small, which is due to the fact that considering DR 

Table 1
Daily operation costs in four scenarios.

Case Total operation cost (¥) Energy purchase cost (¥) Carbon trading cost (¥) Actual carbon
 emission (kg)

1 20108.905 18383.754 1725.151 39664.194
2 18313.638 16674.573 795.267 34779.651
3 19181.408 17235.364 2088.530 37816.414
4 18017.079 16376.575 730.435 33243.612
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within the carbon trading mechanism not only converts the peak load to a low load, but also 
achieves multi-energy compatibility and smooths the user load curve. In comparison with those 
of scenario 1, the total operation cost of scenario 4 is decreased by 10.4%, the energy purchase 
cost is reduced by 10.91%, the carbon emission cost is decreased by 57.66%, and the actual 
carbon emission is lessened by 6420.582 kg. Therefore, through the comparison of the four 
scenarios, scenario 4, in which the carbon emission sensing measurement system and DR are 
considered, is the most economical operation mode.
	 Figure 3 shows that the initial electricity price has been stable at 0.78 ¥/(kWh) and the initial 
heat price at 0.37 ¥/(kWh). After considering the time-of-use price, the electricity price is 
determined to be 1.09 ¥/(kWh) in the peak period (10:00–12:00 and 20:00–22:00), 0.35 ¥/(kWh) 
in the valley period (01:00–07:00 and 23:00–24:00), and 0.68 ¥/(kWh) in the normal period 
(8:00–9:00 and 13:00–19:00). The peak and valley periods of heat and electricity prices are 
slightly different. The heat price is determined to be 0.58 ¥/(kWh) in the peak period (11:00–
14:00 and 20:00–22:00), 0.25 ¥/(kWh) in the valley period (01:00–07:00 and 18:00–19:00), and 
0.36 ¥/(kWh) in the normal period (8:00–10:00 and 13:00–17:00). The user can change the 
interval of using electric and thermal energies in accordance with the price fluctuation, and the 
variation curve of electric and thermal loads is shown in Fig. 4. 
	 Figure 4 shows that after considering DR, compared with the distribution of the original load, 
we achieved partial load reduction during high price periods and partial load transfer during low 

Fig. 3.	 (Color online) Price comparison diagram.
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price periods. The shiftable load transfer parts of the load during the periods of 09:00–12:00 and 
19:00–22:00 are shifted to the periods of 23:00–07:00 and 13:00-18:00, rendering the load curve 
relatively smooth. The replaceable load converts part of the electric load into the thermal load 
during the high-electricity-price period and converts a portion of the thermal load into the 
electric load in the low-electricity-price period (11:00–19:00). Price- and replacement-based DRs 
work in synergy to realize peak shaving and valley filling.

4.2.2	 Comparative analysis of different algorithms in same scenario

	 In scenario 4, four different algorithms, namely, PSO, SCA, NGO, and INGO, are compared 
and analyzed, as shown in Table 2.
	 Table 2 shows that, in comparison with those of the NGO algorithm, the total operation cost 
of the INGO algorithm is decreased by 9.4%, the energy purchase cost is decreased by 6.24%, 
the carbon trading cost is decreased by 17.53%, and the actual carbon emission is lessened by 
1164.253 kg, which verifies the effectiveness of the INGO algorithm using the improved 
strategies and the improved performance of the algorithm overall.  In scenario 4, the superiority 
and inferiority of different algorithms are ranked as INGO, NGO, PSO and SCA. Compared 
with those of SCA, the total operation cost of the INGO algorithm is decreased by 17.75%, the 
energy purchase cost is decreased by 17.09%, the carbon trading cost is decreased by 28.73%, 
and the actual carbon emission is decreased by 1917.411 kg. The performance of the original 
NGO is also better than those of PSO and SCA. The sine and cosine factor oscillation in SCA is 
introduced into the INGO algorithm, which further strengthens the performance of the INGO 
algorithm, and the results of its application in practical problems also prove this point. The 

Fig. 4.	 (Color online) Load variation after considering DR.
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Fig. 5.	 (Color online) Electric power balance.

Fig. 6.	 (Color online) Thermal power balance.

Table 2
Daily operation costs with four algorithms.

Algorithm Total operation cost (¥) Energy purchase cost (¥) Carbon trading cost (¥) Actual carbon
 emission (kg)

PSO 21904.832 19752.452 1024.849 35161.023
SCA 23497.658 21643.763 1198.371 36549.334
NGO 19886.524 17466.869 885.730 34407.865
INGO 18017.079 16376.575 730.435 33243.612
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INGO algorithm is far better than NGO and SCA in terms of convergence accuracy and also 
exceeds the classical intelligent algorithm PSO.
	 The electric and thermal power balances of the IEHS model solved by the INGO algorithm 
are shown in Figs. 5 and 6, respectively.
	 Figure 5 shows that, in the time period of 12:00–18:00, the output powers of PV and WT are 
relatively high. In the case of satisfying users’ electric load and the HP of the electric equipment, 
part of the electric energy is stored by BAT and a portion of the electric energy is sold to the 
superior grid. In other time periods, when PV and WT fail to satisfy users’ electric load, CHP 
and BAT supply and discharge power. Particularly in the time period when PV cannot supply 
power (20:00–5:00), CHP and WT are the main sources of power. At the same time, the electric 
load is also lower at night. The output of CHP is slightly smaller than that of WT, and the carbon 
emission generated will not be considerable. In the case of abundant electric energy, BAT will 
store the excess electric energy. In short, the strategy used to supply power to users is that PV 
and WT are preferentially utilized, followed by BAT discharge. If the electric load cannot be 
satisfied, CHP is finally utilized to maximize the use of electric energy. The consumed power of 
HP will vary with the change in users’ thermal load. Compared with normal conditions, users 
consume more power during the peak period of heat load and less power during the trough 
period of heat load.
	 Figure 6 shows that the thermal load of users is less than the electric load, and the thermal 
power is mostly supplied by GB and HP. CHP also outputs a portion of the thermal power when 
providing electric power, and HST stores part of the thermal energy during the time when the 
thermal power is abundant (1:00 and14:00–16:00) and releases the thermal energy in the case of 
low carbon emission. Similarly to that of electric power, the supply of thermal power to the 
users’ thermal demand follows the strategy of energy saving and emission reduction, with the 
priority HP supplying thermal load, followed by HST releasing thermal energy, and finally, GB 
and CHP outputting thermal energy to satisfy users when the thermal power supply is 
inadequate. This is due to the fact that compared with GB, HP consumes electric power to 
generate thermal power, which is more conducive to reducing carbon emission, especially at low 
electricity prices. 

5.	 Conclusions

	 Aiming to realize IEHS, the authors established an economic dispatch model that 
incorporated the carbon emission sensing measurement system and DR, and proposed an INGO 
algorithm with superior performance. The results of different scenarios and algorithms are 
compared and analyzed, and the optimal dispatch scheme of the IEHS model is obtained. The 
results are as follows.
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(1)	After introducing the carbon emission sensing measurement system, the carbon emission 
cost is reduced by 53.9% and the actual carbon emission is reduced by 4884.543 kg, which 
achieves a low-carbon economic dispatch.

(2)	After including DR, the energy purchase cost is reduced by 6.25%, which provides a financial 
energy purchase plan. 

(3)	With both the carbon emission sensing measurement system and DR, the total operation cost 
is decreased by 10.4%, the energy purchase cost is decreased by 10.91%, the carbon emission 
cost is reduced by 57.66%, and the actual carbon emission is decreased by 6420.582 kg.

(4)	Compared with those of the NGO algorithm, the total operation cost of the INGO algorithm 
is reduced by 9.4% and the energy purchase and carbon trading costs are decreased by 6.24 
and 17.53%, respectively, which verifies the practicability of the INGO algorithm.

	 Our main contributions are as follows. (1) An IEHS economic operation optimization model 
that incorporates the carbon emission sensing measurement system and DR is established. (2) 
An INGO algorithm that uses Bernoulli chaotic mapping, sine-cosine oscillation variation, 
dynamic inertia weighting factor, and Lévy flight strategy is introduced. (3) The effectiveness 
and practicability of the IEHS model and INGO algorithm are proved by the comparative 
analysis of different scenarios and algorithms.
	 Although we established an economic scheduling model, there is still room for improvement. 
Future research should focus on enhancing the coordinated operation efficiency among 
equipment, strengthening the coupling relationship of energy flow in the system, and reducing 
the loss during energy conversion and transmission. In addition, the effect of source-load 
uncertainty under DR needs to be further analyzed.
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