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 The main objective of this study was to develop a method for the maximum power point 
tracking (MPPT) of photovoltaic module arrays (PVMAs) implemented using two proposed 
improved grey wolf optimization algorithms (GWOAs). A high-step-up soft-switching converter 
combined with lost-cost voltage and current sensors was adopted to realize MPPT. This reduced 
the converter switching losses and cost. Furthermore, in the improved GWOAs, iteration 
parameters were automatically adjusted online on the basis of the slope of the power–voltage 
(P–V) curve of the PVMA. In addition, 0.8 times the maximum power point (MPP) voltage of 
the PVMAs under standard test conditions was set as the starting voltage for conducting global 
MPPT. Lastly, by verifying the proposed improved GWOAs with actual test results, where 
multiple peak values were generated in the P–V characteristic curve of the PVMA by shading, 
we demonstrated that all MPPs could be tracked successfully, and the two improved GWOAs 
reduced the tracking time by at least 18.6 and 33.3% compared with that of the conventional 
GWOA. Therefore, the improved GWOAs exhibit superior tracking speed and stability.

1. Introduction

 In a photovoltaic module array (PVMA), solar radiance and temperature fluctuations cause 
output P–V characteristic curves to exhibit nonlinear changes. Therefore, maximum power point 
tracking (MPPT) technology is necessary to ensure that the PVMA is capable of tracking the 
maximum power point (MPP) in a changing environment. Currently, conventional perturbation 
and observation (P&O) is a commonly used method for MPPT,(1,2) where perturbation is 
achieved by increasing the fixed duty cycle or reducing the voltage. If the voltage perturbation 
leads to an increase (decrease) in power output, the next perturbation is executed in the same 
(opposite) direction. Although the P&O method has advantages such as a simple architecture and 
measurement parameters, it fails to precisely track the true MPP, and oscillations occur near the 
MPP. When changes in solar radiance are large, timely adjustments cannot be made, and 
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adjustments can easily be affected by power surges, which cause operational failure. 
Furthermore, although the application of the P&O method with the P–V characteristic curve of 
the PVMA having a single peak value leads to the successful tracking of the MPP, the P–V 
characteristic curve will generate multiple peaks if the malfunction or shading of the photovoltaic 
module occurs. Although this may be detected by the local maximum power point (LMPP) 
during tracking, the tracking of a globally true MPP will not be possible.
 Several smart MPPT methods have been proposed for the control of multiple peak values 
caused by the shading of some modules in a PVMA that generate characteristic P–V curves.(3–15) 
One of these MPPT methods is ant colony optimization (ACO).(5) This algorithm has few setting 
parameters and a simple structure, but its search speed is low, reducing its suitability for finding 
an optimal path quickly. Although artificial bee colony optimization also requires few setting 
parameters and is fast,(6,7) its tracking speed, convergence, and stability are affected by the 
number of scouting bees, and this may result in an excessively long tracking response time. On 
the other hand, particle swarm optimization (PSO), based on a study of bird feeding behavior,(8,9) 
requires relatively few iterations of swarm evolution compared with other similar algorithms. 
However, a problem can arise when this algorithm becomes trapped in a local solution and fails 
to achieve precise search results. Although the genetic algorithm (GA) has outstanding optimum 
search characteristics, which allow the system to converge slowly,(10,11) when it is applied 
independently, longer calculation times might be needed for large swarms, which also leads to 
longer tracking times. Teaching–learning-based optimization (TLBO) is a swarm intelligence 
optimization algorithm proposed by Rao et al. in 2011,(12,13) which was inspired by the 
interaction between a teacher and students. TLBO has swarm memory characteristics and 
scatter searching similar to those of ACO and PSO, where the principle is easy to comprehend 
and few setting parameters are required. However, student levels differ and the teaching–
learning factor range is smaller. The implementation of inadequate teaching–learning parameters 
may result in poor learning efficiency and excessively long response and tracking times. The 
cuckoo search algorithm (CSA) is also a swarm intelligence optimization algorithm and was 
proposed by Ahmed and Salam(14) and Soneji and Sanghvi.(15) However, fixed steps are used in 
the conventional CSA for the upper and lower search range limits, and searching continues until 
the global maximum power point (GMPP) is located. GMPP tracking takes a long time and can 
be impeded by back-and-forth oscillation between temporary and steady states. A combination 
of an intelligent algorithm with the conventional MPPT has also been proposed,(16,17) where it 
was suggested that PSO or GA be integrated with the P&O method. However, although the 
combined method was capable of finding the global optimum, the response time and tracking 
speed were still unsatisfactory.
 Therefore, because of the shortcomings mentioned above, we proposed two improved 
GWOAs in this study, which allows the P–V characteristics of a PVMA to be quickly 
tracked.(18–20) GMPP tracking was found to be fast and successful even in the presence of 
multiple peaks caused by the partial shading or malfunction of some photovoltaic modules. 
These approaches provided good tracking speed as well as excellent steady-state performance. It 
can also reduce the cost and improve the efficiency of tracking. In addition, a high-step-up soft-
switching converter previously developed by the authors combined with simple voltage and 
current sensors was used for the MPPT of a PVMA.(21)
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2. Characteristics of PVMA

 The PVMA in a photovoltaic power generation system consists of several modules connected 
in series and parallel. Many different and changing environmental conditions, such as tall trees, 
buildings, clouds, dust, and dirt, will cause the shading of the PVMA, reducing the output power 
from the array and generating multiple peaks in the output P–V characteristic curve. To explore 
the characteristics of a PVMA under intermittent shading conditions, a SunWorld SWM-20W 
unit with four modules in series and three in parallel(22) was used for the experiments in this 
study. In Table 1, the electrical parameter specifications for a single SWM-20W photovoltaic 
module are displayed.(22) Figure 1 shows a MATLAB simulation of a PVMA with four modules 
in series and three in parallel under standard test conditions (STCs), where the output I–V and 
P–V characteristic curves for a different shading ratio on each module in two different series are 
displayed. From Fig. 1, it can be seen that when the modules in different series have different 
shading ratios, the P–V characteristic curve has multiple peaks. Figure 2 displays the architecture 
of an improved MPPT controller based on the improved GWOA proposed in this paper.

Table 1
Electrical parameter specifications for SWM-20W photovoltaic module.(22)

Parameter Value
Maximum output power, Pmax 20 W
Current of maximum output power point, Impp 1.10 A
Voltage of maximum output power point, Vmpp 18.18 V
Short-circuit current, Isc 1.15 A
Open-circuit voltage, Pmaxoc 22.32 V

Fig. 1. (Color online) Output I–V and P–V characteristic curves for a PVMA (model SWM-20W) under STCs, 
where each module in the two different series has a different shading ratio.
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3. Grey Wolf Optimization Algorithm

 The GWOA is a swarm intelligence optimization algorithm proposed by Mirjalili et al. in 
2014,(18) which mimics the social hierarchy and hunting mechanism of grey wolves in 
nature.(18–20) The hunting mechanism has three stages, namely, surround, pursue, and attack, 
where hunting is carried out by wolves at different levels in the social hierarchy. The continuous 
renewal of grey wolves at the highest level in the hierarchy eventually leads to a globally 
optimized search.
 In this algorithm, the positions of the highest ranked grey wolves are continually updated in 
the search for global optimal values. The GWOA includes the following advantages. (a) Easy to 
realize: The implementation of this algorithm is relatively simple. It only requires the setting of a 
few basic parameters, such as the number of grey wolves and the maximum number of iterations, 
and it does not have a complex mathematical model, thus reducing the computation time. (b) 
High convergence speed: Since the GWOA is inspired by the social behavior of grey wolves, it 
can converge to the best solution quickly, and the leader of the grey wolf pack guides other grey 
wolves to search over time and further modify the speed of the solution, thus increasing the 
search speed. (c) Global search capability: The GWOA does not limit itself to the search of local 
optimal values; by comparing the adaptation values and location information of the top three and 
other solutions, the GWOA can perform a global search and find the optimal solution. Therefore, 
the method can utilize the position and behavior of the leading grey wolf to guide other solutions 
to update results, which helps the algorithm to quickly converge to the best solution and thus 
find the best global value.

Fig. 2. (Color online) Architecture of the MPPT controller based on the improved GWOA.
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3.1 Conventional GWOA

 The steps in a conventional GWOA search are as follows:
Step 1:  The number of grey wolves, ωT; the maximum iteration number Max_t; the initial 

GWOA parameters A, C, a; and the fitness values are set for each grey wolf.
Step 2:  The locations of the top three grey wolves are set in terms of the fitness value as Xα, Xβ, 

and Xδ, where the grey wolf at Xα with the best fitness value is marked as the current 
optimum.

Step 3:  Apply Eq. (1) to calculate the distances between the location values Xω(t) of the other 
grey wolves ω (i.e., not the top three) and those (Xα, Xβ, Xδ) of the top three grey wolves. 
The location value (i.e., fitness value) of each grey wolf ω is then renewed using Eqs. (2) 
and (3).
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   Here, A and C are the iteration parameters; Dα(t), Dβ(t), and Dδ(t) are the distances 
between the random location values of the top three grey wolves α, β, δ and the location 
values of the other grey wolves ω (i.e., not the top three); Xω(t) is the current location 
value of grey wolf ω; X1(t + 1), X2(t + 1), and X3(t + 1) are the location values of the other 
grey wolves ω (i.e., not the top three) after renewal in accordance with the location 
values of the top three grey wolves; and Xω(t + 1) is the mean location value (i.e., the new 
fitness value) of each grey wolf ω after renewal.

Step 4:  Renew parameters A, C, and a as

 A = 2a ‧ r1 − a, (4)

 C = 2 ‧ r2, (5)

   where a is linearly reduced from 2 to 0 by increasing the number of iterations, and r1 and 
r2 are random numbers in the interval [0, 1].
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Step 5:  If the number of iterations reaches Max_t, the iteration stops. The top three fitness 
values Xα, Xβ, and Xδ are then recorded together with the output optimal fitness value Xα. 
When compliance with the conditions is not achieved, the process returns to Step 2.

3.2 Improved GWOA

 The GWOA has advantages of simplicity, high search speed, highly precise searching, and 
ease of use, making it a valuable and extremely useful algorithm. However, at the time of its 
inception, the GWOA was a new type of biological intelligence optimization algorithm and the 
studies were still at an early stage, and the theory and development of this algorithm are still 
incomplete. In Ref. 23, an improved GWOA with higher performance was proposed. It focuses 
on the parameter a of the conventional GWOA, adjusting it using Eq. (6), which allows the 
GWOA to search for the optimum with a larger step in the initial iteration.
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 Max_t: the maximum number of iterations (set to 50), t: the current number of iterations, ao: 
the initial iteration parameter (set to 2), ωT: the number of grey wolves (set to 5).
 Consequently, the iteration parameter a is finely tuned as outlined in Table 2 so that the 
parameters change with the slope of the P–V characteristic curve. This accelerates the escape 
from local optima and allows a faster acquisition of the global optimum. The iteration parameters 
a in Table 2 are only adjusted when ΔP > 0, since this inequality indicates that the current 
adjustment of parameter a increases the output power of the PVMA, meaning that the next 
adjustment of a will accelerate tracking towards the MPP. Figure 3 shows the variation in a with 

Table 2
Adjustment of parameters according to the slope of the P–V characteristic curve for the improved GWOA.(23)

Item
Condition

( 1) ( )
( 1) ( )

P t P tm
V t V t

+ −
+ −



ΔP = P(t + 1) − P(t)
ΔP > 0

1 m > 2 a = Δa + 0.05
2 2 ≥ m > 1.5 a = Δa + 0.03
3 1.5 ≥ m > 1 a = Δa − 0.01
4 1 ≥ m > 0.5 a = Δa − 0.03
5 0.5 ≥ m > 0 a = Δa − 0.05
6 m = 0 a = Δa
7 0 > m ≥ −0.5 a = Δa − 0.05
8 −0.5 > m ≥ −1 a = Δa − 0.03
9 −1 > m ≥ −1.5 a = Δa − 0.01

10 −1.5 > m ≥ −2 a = Δa + 0.03
11 m < −2 a = Δa + 0.05
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the number of iterations and the slope of the P–V characteristic curve, Fig. 4 shows the 
relationship between the slope m of the P–V characteristic curve of the PVMA and the variation 
in array output power ΔP, and Fig. 5 shows the iteration flow chart for the improved GWOA. 
However, this improved GWOA is only limited to the simulation stage, and its robustness has not 
yet been verified owing to the limited number of test cases. In response to this shortcoming, the 
improved GWOA proposed in this paper is evaluated in more practical test cases, and 0.8 times 
the MPPT voltage under STC was set as the starting voltage to conduct GMPP tracking and 
verify its robustness.

4. Adopted High-step-up Soft-switching Converter

 Figure 6 shows the circuit architecture of the adopted high-step-up soft-switching 
converter.(21) In the circuit, the energy storage inductor of a conventional boost converter was 
replaced with a coupled inductor. This allowed the voltage conversion ratio to be increased by 
the turn ratio of the coupled inductor.(24) Moreover, a resonant branch was connected in the 
converter to achieve the zero-voltage switching (ZVS) function of the main switch initiated by a 

Fig. 3. (Color online) Variation in a with the number of iterations for the improved GWOA.(23)

Fig. 4. (Color online) Relationship between the slope m of the P–V characteristic curve and the PVMA output 
power variation.(23)
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Fig. 5. Iteration flow chart of the improved GWOA.

Fig. 6. Circuit architecture of the adopted high-step-up soft-switching converter.(21)
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switch control signal. This converter has advantages of a simple circuit architecture and ease of 
control.(25,26) The relevant electrical specifications of the high-step-up soft-switching 
converter(21) are given in Table 3. Table 4 shows the circuit component values and parameters.(21)

5. Experimental Results

 A TMS320F2809 digital signal processor (DSP) from Texas Instruments was rebuilt to 
realize the adopted high-step-up soft-switching converter and the MPPT controller used in this 
study. Figures 7 and 8 present the voltage and current sensor circuits for the MPPT of the 
PVMA, respectively. The appearance of the overall hardware circuitry is shown in Fig. 9 and the 
experimental test bench used in this study is shown in Fig. 10.

5.1 Test results of MPPT for improved GWOA

 The Chroma ATE 62050H-600S programmable DC power supply(27) offers the function of 
simulating the output characteristics of PVMAs. It can simulate the actual P–V and I–V output 

Table 3
Electrical specifications of the high-step-up soft-switching converter.(21)

DC input voltage on low-voltage side, VS VS = 70 V ± 10%
DC output voltage on high-voltage side, VH VH = 400 V
Switching frequency, f f = 25 kHz

Turn ratio of coupled inductor, N 2

1

2NN
N

= =

Rated output power, P P = 300 W

Table 4
Parameters of each component of the high-step-up soft-switching converter.(21)

Coupled inductance, Lm1 Lm1 = 872 μH
Resonant inductance, Lr Lr = 872 μH
Resonant capacitance, Cr Cr = 140 pF
Capacitance on low-voltage side, CS CS = 220 μF / 400 V
Capacitance on high-voltage side, CH CH = 470 μF / 500 V
Main switch, S1 MOSFET-TK49N65W (650 V/49 A)
Resonant switch, S1r MOSFET-TK49N65W (650 V/49 A)

Fig. 7. Voltage-sensing circuit for MPPT of PVMA.
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curves of PVMAs under different temperature, sunlight intensity, and shading conditions, and 
can output and display the MPPT status of PVMAs in real time and record their output 
waveforms simultaneously.

Fig. 8. Current-sensing circuit for MPPT of PVMA.

Fig. 9. (Color online) Appearance of physical circuit for high-step-up soft-switching converter.

Fig. 10. (Color online) Experimental test bench used with the MPPT controller.
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 Therefore, a Chroma ATE 62050H-600S programmable DC power supply(27) was used in our 
laboratory experiments to mimic the output of a PVMA. Table 5 shows five test cases of 
different mimicked series–parallel connection configurations with different degrees of shading. 
Different peak values appeared in the P–V curves depending on how many modules were shaded 
and the shading ratio for each module. Subsequently, actual tests of MPPT were implemented 
using a conventional GWOA and two other types of improved GWOA. The tracking performance 
characteristics of these methods were then compared.

Case 1:  Four modules in series and three in parallel: (0% shading +0% shading +0% 
shading +0% shading)//(0% shading +0% shading +0% shading +0% shading)//
(0% shading +0% shading +0% shading +0% shading)

 Figure 11 shows the I–V and P–V characteristic curves for Case 1, obtained from an actual 
test conducted on the PVMA with four modules in series and three in parallel. The normal 
operation of the PVMA without any shading gave a maximum output power of 244.5 W. Figures 
12–14 respectively show the actual MPPT test results with a conventional GWOA, an improved 
GWOA with only the iteration parameters adjusted, and an improved GWOA with the iteration 
parameters adjusted and the initial tracking voltage set at 0.8 times the MPP voltage Vmp of the 
PVMA under STCs. The figures show that when one peak appeared in the P–V characteristic 
curve, all three MPPT methods could successfully track the MPP, particularly the improved 
GWOA with the iteration parameters adjusted and the initial tracking voltage set at 0.8Vmp. In 
this case, the initial tracking point was closest to the MPP, and the tracking speed and steady-
state performance were higher than those of the other methods.

Table 5
Five test cases of different mimicked series–parallel connection configurations with different degrees of shading.
Case Series–parallel connecting configuration and shading status Number of peaks in P–V curve

1

Four modules in series and three in parallel: 
(0% shading +0% shading +0% shading +0% shading)
//(0% shading +0% shading +0% shading +0% shading)
//(0% shading +0% shading +0% shading +0% shading)

1 

2

Four modules in series and three in parallel: 
(0% shading +0% shading +0% shading +90% shading)
//(0% shading +0% shading +0% shading +0% shading)
//(0% shading +0% shading +0% shading +0% shading)

2 (peak value at left)

3

Four modules in series and three in parallel: 
(0% shading +0% shading +70% shading +90% shading)
//(0% shading +0% shading +70% shading +90% shading)
//(0% shading +0% shading +0% shading +0% shading)

3 (peak value at left)

4

Four modules in series and three in parallel: 
(0% shading +20% shading +40% shading +90% shading)
//(0% shading +0% shading +0% shading +0% shading)
//(0% shading +0% shading +0% shading +0% shading)

4 (peak value second from right)

5

Four modules in series and three in parallel: 
(0% shading +70% shading +80% shading +90% shading)
//(0% shading +70% shading +80% shading +90% shading)
//(0% shading +70% shading +80% shading +90% shading)

4 (peak value at left end)

+ : series; // : parallel.
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Fig. 12. (Color online) Actual test results for MPPT of conventional GWOA in Case 1.

Fig. 13. (Color online) Actual test results for MPPT of improved GWOA in Case 1 with iteration parameters 
adjusted.

Fig. 11. (Color online) Characteristic I–V and P–V curves of actual test in Case 1.
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Case 2:  Four modules in series and three in parallel: (0% shading +0% shading +0% 
shading +90% shading)//(0% shading +0% shading +0% shading +0% shading)//
(0% shading +0% shading +0% shading +0% shading)

 Figure 15 shows the I–V and P–V characteristic curves for Case 2, obtained from an actual 
test conducted on the PVMA. Because one module in the array was 90% shaded, two peaks 
appeared in the P–V characteristic curve and the true MPP was on the left at a value of 195.3 W. 
Figures 16–18 respectively show the actual test results of MPPT for the conventional GWOA, the 
improved GWOA with only the iteration parameters adjusted, and the improved GWOA with the 
iteration parameters adjusted and the initial tracking voltage set at 0.8Vmp. The figures show that 
when two peaks appeared in the P–V characteristic curve and the true MPP was near 0.8Vmp, the 
tracking response of the improved GWOA with the iteration parameters adjusted and the initial 
tracking voltage set at 0.8Vmp was 1.75 s faster than that of the conventional GWOA and 1.23 s 
faster than that of the GWOA with only the iteration parameters adjusted.

Case 3:		Four modules in series and three in parallel: (0% shading +0% shading +70% 
shading +90% shading)//(0% shading +0% shading +70% shading +90% shading)//
(0% shading +0% shading +0% shading +0% shading)

 Figure 19 shows the I–V and P–V characteristic curves for Case 3, obtained from testing the 
PVMA. Two modules in the array were 70 and 90% shaded, and three peaks appeared in the 
P–V characteristic curve. The true MPP was on the left at a value of 124.9 W. Figures 20–22 
respectively show the actual MPPT test results for the conventional GWOA, the improved 
GWOA with only the iteration parameters adjusted, and the improved GWOA with the iteration 
parameters adjusted and the initial tracking voltage set at 0.8Vmp. The figures show that when 
three peaks appeared in the P–V characteristic curve, although all three methods could track the 
true MPP, the tracking speed was highest for the improved GWOA with the iteration parameters 
adjusted and the initial tracking voltage set at 0.8Vmp.

Fig. 14. (Color online) Actual test results for MPPT of improved GWOA in Case 1 with iteration parameters 
adjusted and initial tracking voltage set at 0.8Vmp.
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Fig. 15. (Color online) Characteristic I–V and P–V curves of actual test in Case 2.

Fig. 16. (Color online) Actual test results for MPPT of conventional GWOA in Case 2.

Fig. 17. (Color online) Actual test results for MPPT of improved GWOA in Case 2 with only iteration parameters 
adjusted.
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Fig. 18. (Color online) Actual test results for MPPT of improved GWOA in Case 2 with iteration parameters 
adjusted and initial tracking voltage set at 0.8Vmp.

Fig. 19. (Color online) Characteristic I–V and P–V curves of actual test in Case 3.

Fig. 20. (Color online) Actual test results for MPPT of conventional GWOA in Case 3.
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Fig. 21. (Color online) Actual test results for MPPT of improved GWOA in Case 3 with iteration parameters 
adjusted.

Fig. 22. (Color online) Actual test results for MPPT of improved GWOA in Case 3 with iteration parameters 
adjusted and initial tracking voltage set at 0.8Vmp.

Case 4:  Four modules in series and three in parallel: (0% shading +20% shading +40% 
shading +90% shading)//(0% shading +0% shading +0% shading +0% shading)//
(0% shading +0% shading +0% shading +0% shading)

 Figure 23 shows the I–V and P–V characteristic curves for Case 4. Because three modules in 
the array were 20, 40, and 90% shaded, four peaks appeared in the P–V characteristic curve and 
the true MPP value of 175.3 W was on the third peak. Figures 24–26 respectively show the actual 
MPPT test results for the conventional GWOA, the improved GWOA with only the iteration 
parameters adjusted, and the improved GWOA with the iteration parameters adjusted and the 
initial tracking voltage set at 0.8Vmp. The figures show that when four peaks appeared in the P–V 
characteristic curve, although both the conventional GWOA and the improved GWOA with only 
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Fig. 23. (Color online) Characteristic I–V and P–V curves of actual test in Case 4.

Fig. 24. (Color online) Actual test results for MPPT of conventional GWOA in Case 4.

Fig. 25. (Color online) Actual test results for MPPT of improved GWOA in Case 4 with only iteration parameters 
adjusted.
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the iteration parameters adjusted could track the true MPP, the tracking speed was low. When 
the iteration parameters were adjusted and the initial tracking voltage was set at 0.8Vmp, the 
improved GWOA could easily escape an LMPP and the true MPP was quickly tracked.

Case 5:  Four modules in series and three modules in parallel: (0% shading +70% shading 
+80% shading +90% shading)//(0% shading +70% shading +80% shading +90% 
shading)//(0% shading +70% shading +80% shading +90% shading)

 Figure 27 shows the I–V and P–V characteristic curves obtained by testing for Case 5. 
Because three modules in the array were 70, 80, and 90% shaded, four peaks appeared in the 
P–V characteristic curve and the true MPP was on the left end at a value of 61.12 W. Figures 
28–30 respectively display the actual MPPT test results for the conventional GWOA, the 
improved GWOA with only the iteration parameters adjusted, and the improved GWOA with the 
iteration parameters adjusted and the initial tracking voltage set at 0.8Vmp. The figures show that 
when four peaks appeared in the P–V characteristic curve, the conventional GWOA and the 
improved GWOA with only the iteration parameters adjusted easily fell into an LMPP, resulting 
in a low tracking speed. However, when the iteration parameters were adjusted and the initial 
tracking voltage was set at 0.8Vmp, the GWOA tracking speed was high.

5.2 Comparison between actual test results of each case

 In this study, a conventional GWOA, an improved GWOA with only the iteration parameters 
adjusted, and an improved GWOA with the iteration parameters adjusted and the initial tracking 
voltage set at 0.8Vmp were used. Twenty actual MPPT tests were conducted for the five cases, 
where the average times from the start of tracking to the true MPP were calculated and compiled, 
as given in Table 6. The table shows that for all 20 tests of the improved GWOA for all five cases, 
the average tracking times were shorter than those obtained with the conventional GWOA. The 

Fig. 26. (Color online) Actual test results for MPPT of improved GWOA in Case 4 with iteration parameters 
adjusted and initial tracking voltage set at 0.8Vmp.
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Fig. 27. (Color online) Characteristic I–V and P–V curves of actual test in Case 5.

Fig. 28. (Color online) Actual test results for MPPT of conventional GWOA in Case 5.

Fig. 29. (Color online) Actual test results for MPPT of improved GWOA in Case 5 with only iteration parameters 
adjusted.
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improved GWOA with the iteration parameters adjusted and the initial tracking voltage set at 
0.8Vmp gave the highest tracking performance. For the different numbers of peaks in the P–V 
characteristic curves, the average tracking time of the improved GWOA with only the iteration 
parameters adjusted was reduced by 19.0–58.3% compared with that of the conventional GWOA. 
However, the average tracking time of the improved GWOA with both the iteration parameters 
adjusted and the initial tracking voltage set at 0.8Vmp was 33.3–78.3% shorter than that of the 
conventional GWOA.

Fig. 30. (Color online) Actual test results for MPPT of improved GWOA in Case 5 with iteration parameters 
adjusted and initial tracking voltage set at 0.8Vmp.

Table 6
Test results for five different series–parallel connection configuration and shading conditions.

Case Number of peaks in P–V curve

Average tracking time (s) 
(% reduction of tracking time compared with conventional GWOA)

Conventional GWOA
Improved GWOA 
with only iteration 

parameters adjusted

Improved GWOA 
with iteration 

parameters adjusted 
and initial tracking 
voltage set at 0.8Vmp

1 1 2.3 1.2 (47.8%) 0.5 (78.3%)
2 2 (peak value on left) 2.4 1.0 (58.3%) 0.7 (70.8%)
3 3 (peak value at left) 3.5 2.4 (31.4%) 1.5 (57.1%)
4 4 (peak value second from right) 4.3 3.5 (18.6%) 1.8 (58.1%)
5 4 (peak value at left end) 4.2 3.4 (19.0%) 2.8 (33.3%)
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5.3 Discussion

 The main contribution of this paper is to improve the tracking speed and efficiency of the 
GWOA for MPPT by improving the conventional GWOA so that the step size factor in the 
iteration formula can be automatically adjusted online according to the number of iterations and 
the slope of the P–V characteristic curve of the PVMA. This allows the PVMA to jump out of an 
LMPP when the P–V characteristic curve has multiple peaks due to the shading of some modules 
and to track the GMPP accurately and quickly. In addition, to further enhance the speed response 
of the MPPT, the starting tracking voltage was set to 0.8 times the MPP voltage of the PVMA 
under STC. The GMPP tracking performance was evaluated for five cases with different 
numbers of peaks in the P–V characteristics and different locations of the GMPP under different 
shading conditions, as shown in Table 6, and the proposed improved GWOA GMPP method was 
verified to provide higher performance than the conventional GWOA. In this paper, we proposed 
an improved GWOA applicable to a PVMA for MPPT and used the developed high-step-up soft-
switching converter for MPPT, with a TMS320F2809 DSP from Texas Instruments used as the 
control core. Using the iteration formula of the proposed improved GWOA, the most appropriate 
duty cycle is found, then the final grey wolf position value is used as the optimal target function 
value to realize MPPT control. An MPPT test was conducted under five different shading 
conditions of the PVMA as shown in Table 5. The MPPT test result of the proposed improved 
GWOA was compared with the tracking response of the conventional GWOA and the time to 
reach the GMPP as a basis for performance comparison. The test results are shown in Table 6. In 
addition, to further verify that the tracking performance is superior to those of the other existing 
smart algorithms,(6,8,12) the average tracking times of 20 MPPT tests under four different shading 
conditions, resulting in different numbers of peaks in the P–V characteristic curves and different 
locations of the GMPP of the PVMA, are shown in Table 7 for comparison. From Table 7, it can 
be observed that the proposed MPPT with the simultaneous adjustment of the iteration 
parameters and the improved GWOA with an initial tracking voltage of 0.8Vmp has a faster 
tracking response than the other smart MPPT methods.(6,8,12)

Table 7
Comparison of actual test results for four cases with those using other smart MPPT methods.

Case Number of peaks 
of P–V curve

Method proposed 
in Ref. 6

Method proposed 
in Ref. 8

Method proposed 
in Ref. 12

Method proposed 
in this study

Average tracking 
time (s)

Average tracking 
time (s)

Average tracking 
time (s)

Average tracking 
time (s)

1 1 0.8 2.5 4.5 0.5
2 2 1.2 4.1 4.3 0.7
3 3 1.9 5.6 5.1 1.5
4 4 None* None* 6.6 1.8
None*: The reference does not provide the test results for this case.
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6. Conclusions

 In this study, two improved GWOAs were used for the MPPT of a PVMA. The proposed 
improved GWOA with adjusted iteration parameters and the initial voltage for tracking set at 
0.8Vmp showed much higher performance. From actual test results, it was shown that the partial 
shading of some modules of a PVMA resulted in the generation of multiple peaks in the P–V 
characteristic curve, and the improved GWOA with the iteration parameters adjusted and the 
initial tracking voltage set at 0.8Vmp provided a faster tracking speed response than conventional 
GWOAs and also the improved GWOA with only the iteration parameters adjusted. The 
proposed improved GWOA can be applied to all systems with multipeak characteristics to 
identify the optimal value without trapping at a local maximum position, thus increasing the 
speed of reaching an MPP. When applied to photovoltaic power generation systems for MPPT, 
the improved algorithm will not only improve the efficiency of power generation, but also adapt 
to different environmental conditions, enabling photovoltaic power generation systems to be 
used more effectively and improving their economic efficiency and viability.
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