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	 Nowadays, the number of applications of IoT and AI has increased rapidly to provide 
personalized learning environments that provide control to learners. To promote good sitting 
posture and support the health of primary and middle school students, intelligent learning desks 
with visio sensors,  which can be used to evaluate the health-related effects of sitting posture 
based on three dimensions, namely, human posture, critical threshold, and abnormal posture 
duration, are proposed. In accordance with the joint point model obtained from the OpenPose 
algorithm, we identified five abnormal sitting postures, namely, head tilt, body tilt, head 
lowering, reading at a close distance, and sitting for a long duration. Using this information, we 
designed a detection process for these postures to improve the accuracy of posture evaluation in 
our intelligent learning desks. We optimized the OpenPose model for mobile terminals by 
utilizing deep separable convolution to replace some convolution cores in the two-branch 
multistage network. This approach effectively reduced the amount of network structure 
parameters and significantly decreased the computational load required for the model. As a 
result of this optimization, we were able to more than double the video recognition speed 
compared with the original model. This improvement enables our intelligent learning desks to 
operate with greater efficiency on mobile devices without sacrificing accuracy or performance. 
According to our experiments and practical tests, our system can effectively monitor and warn 
students of common abnormal sitting postures. The recognition rate of abnormal sitting 
postures, such as prolonged learning, head tilt, body tilt, and head bow, has been optimized to 
over 92%. This high level of accuracy enables our intelligent learning desks to provide timely 
feedback and alerts to students when they exhibit poor posture habits, which can help prevent 
long-term health issues associated with prolonged sitting or incorrect posture.
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1.	 Introduction

	 Maintaining a good learning sitting posture is crucial for the growth and development of 
teenagers. According to statistical data, students spend around 7 h of their day studying, and 
75% of them have incorrect sitting posture during this time. This has led to over 90% of students 
developing physical illnesses associated with unhealthy sitting posture, such as hunchbacks, 
myopia, scoliosis, and oblique shoulders. Although teachers and parents attempt to pay attention 
to students’ sitting posture, it is challenging to achieve continuous supervision and reminders. 
To address this problem, we propose utilizing intelligent learning desks based on visio sensors to 
achieve real-time detection of students’ postures. This approach allows for the continuous 
monitoring and feedback of students’ posture habits, while also allowing for personalized 
suggestions and adjustments to be made. Our system uses a visio sensor installed on the 
intelligent desk to collect data on students’ learning sitting posture and then employs human 
posture estimation to monitor their postures in real time. When the system detects an abnormal 
sitting posture, it provides timely reminders through various modalities including voice, text, 
screen flicker, and vibration signals. By doing so, it can effectively prevent harm associated with 
abnormal sitting posture and promote healthy growth and development of teenagers.

2.	 Related Work
	
2.1	 Artificial Intelligence Internet of Things

	 Artificial Intelligence Internet of Things (AIoT) is a combination of AI and IoT technologies. 
It allows for the collection and analysis of vast amounts of data from a wide range of sources 
across various dimensions. This data is then stored in both the cloud and edge, utilizing the 
capabilities of IoT,(1–4) and subsequently realizes the digitalization and intelligent connection of 
everything through big data analysis and higher forms of AI. IoT technology and AI integration 
aims to create a cohesive intelligent ecosystem that amalgamates various intelligent terminal 
devices, system platforms, and application scenarios. Achieving this requires constant 
technological innovation, development of AIoT technical and testing standards, efficient 
implementation of relevant technologies, and the widespread promotion of typical use cases. 
These critical issues need to be tackled effectively within the IoT and AI sectors.
	 As IoT and AI technologies continue to mature, an increasing number of enterprises have 
prioritized AIoT as their primary development direction. The term “AIoT” has been attracting 
significant attention within the IoT industry since 2017. It refers to the integration of AI and IoT 
technologies in practical applications, enabling the creation of intelligent systems that can 
provide deeper insights into data analysis and decision-making processes. This integration has 
opened up new possibilities for advanced automation, predictive maintenance, and real-time 
monitoring, facilitating greater efficiency and productivity across a wide range of industries(5–8). 
An increasing number of industrial applications are incorporating AI into IoT technology. 
Several manufacturers, including Xiaomi, Skyworth, and Hisense, have introduced their own 
AIoT televisions, highlighting the growing demand for intelligent devices that can connect and 
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communicate with each other seamlessly. These smart TVs leverage AI algorithms to enable 
device control, voice recognition, facial recognition, and personalized recommendations, 
providing users with a more interactive and intuitive viewing experience. The integration of AI 
and IoT is transforming traditional devices into “smart” systems, facilitating the development of 
new business models and services across various industries.

2.2	 Smart education

	 Education has undergone a significant transformation in recent years, extending the learning 
process beyond traditional classrooms. Nowadays, learners have access to vast digital libraries, 
online courses, and the ability to submit assignments electronically from any mobile device. 
Educational institutions are increasingly offering mobile services that enable students to attend 
classes remotely via videoconferencing and live streaming, providing an immersive and 
engaging learning experience that can be tailored to fit their lifestyles and schedules. This shift 
towards mobile education is empowering individuals to take control of their learning journeys 
and pursue their educational goals more flexibly than ever before.
	 Smart education is a tech-driven approach to improve different aspects of education, 
including management, teaching methodologies, and research. It aims to provide learners with 
personalized, interactive learning experiences and help educators optimize their teaching 
strategies and resource management using technologies such as AI, big data, and cloud 
computing.(9–10) It is not only about making education digital but also involves applying 
emerging technologies to school management, teaching methodologies, and other aspects to 
improve education quality and equity on a larger scale. Through this approach, smart education 
can create a new ecological model for education that aims to promote better results and outcomes 
for both learners and educators alike.

2.3	 Human posture estimation based on visio sensor

	 Human posture estimation typically involves the use of sensors to collect and monitor data on 
a person’s posture. This information is then analyzed and processed to determine their sitting 
posture status. In some cases, vision sensors are used to obtain images of the person, and image 
processing technologies are applied to identify the key characteristics of the human body in the 
images to accurately determine their sitting position. Lan et al. proposed a method for analyzing 
a user’s sitting posture by comparing the proportion of their face in video footage and the spatial 
relationship between specific points on their body.(11) Tariq et al. developed an approach for 
classifying human sitting posture using image processing techniques, which they enhanced by 
combining image information with motion data collected from smartwatches in an IoT 
environment.(12) Kumara et al. improved on the state-of-the-art gait analysis by developing 
novel deep-learning-based algorithms designed to identify occluded frames in a gait sequence 
and use spatiotemporal information to reconstruct them. This approach involved leveraging the 
power of deep learning techniques to detect and fill in missing frames caused by occlusion, 
resulting in more accurate and complete gait analyses.(13) Chen et al. proposed an image 
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authentication method based on the residual histogram shifting technique.(14) Hsia et al. 
proposed a method that uses the time-of-flight (ToF) for an assisting device.(15)  Pai et al. 
designed a control interface for dual-input video/audio recognition consisting of two input 
interface systems, hand posture, and speech recognition, with the use of specific hand postures 
or voice commands for control without the need for wearable devices.(16) Qu et al. proposed a 
human fall detection algorithm that combines human posture, support vector machine (SVM), 
and quadratic threshold decision.(17)

3.	 Feature Extraction of Abnormal Sitting Posture

	 Human posture estimation refers to the method of estimating the relationship between bone 
joint points in the human body and reconstructing the limbs and trunk by detecting the position 
information of these joint points. It is widely used in advanced applications such as human 
behavior recognition, posture tracking, character image generation, and human–computer 
interaction. Human posture estimation methods can be divided into traditional methods and 
deep-learning-based methods. Traditional methods rely on manual feature annotation, treat 
posture estimation as a regression problem, and directly return the coordinates of relevant nodes, 
which may result in lower accuracy. In contrast, deep-learning-based methods, especially 
convolutional neural networks (CNNs) such as the hourglass model and its variants, have shown 
robust performance in human posture estimation tasks. DeepPose was one of the first methods 
to apply deep learning to human posture estimation, while convolutional posture machines 
(CPMs) have greater accuracy for predicting joint point positions. CPM studies the relationship 
between human joint points, learns the expression of spatial information through convolution 
networks, and uses different receptive field sizes to deal with variations in key parts of the 
human body in images.(18) To address the issue of variation in joint point size, Yang et al. 
proposed the Pyramid Residual Module (PRM), a novel module for obtaining multiscale feature 
information from images. The PRM performs feature extraction using multiple branches with 
different scale sizes, each of which obtains a feature map with different sizes through 
downsampling. This enables the module to capture the features of different scales and improve 
the accuracy of joint point prediction in human posture estimation.(19) Tang and Wu proposed 
the Deeply Learned Composite Model (DLCM) to address low-level ambiguity in target image 
recognition. The DLCM utilizes a joint point connection mode representation method, which 
contains rich feature information and demonstrates efficient performance in joint point 
estimation. The use of this approach may improve the design of human joint point data in future 
studies, leading to enhanced accuracy and performance in human posture estimation tasks.(20) 
Feng et al. proposed a solution to the issue that most current research on human posture 
estimation is focused on enhancing network model generalization and overlooks efficiency 
concerns, by introducing fast posture interpretation (FPD). This approach prioritizes training 
lightweight human posture estimation network models, optimizing for both model accuracy and 
computational efficiency.(21) Taking into account the characteristics of hyperactive students and 
the need to deploy applications on intelligent desks with low configuration tablet PCs, 
researchers use OpenPose to analyze human joint point data, focusing specifically on sitting 
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postures. They analyze the characteristics of different sitting postures and use duration analysis 
to determine whether a given posture represents an abnormal learning posture. This system 
provides real-time reminders to help students maintain proper sitting posture while studying. 
These optimizations represent an effective solution for promoting healthy learning habits, 
particularly in the context of hyperactive students. OpenPose is an open-source computer vision 
library that can be used to acquire human joint point data. By analyzing the characteristics of a 
person’s sitting posture and judging the duration of any abnormal sitting posture, OpenPose can 
identify abnormal learning postures and provide real-time reminders. The library uses 18 joints 
to map the acquired human joint map and obtain more accurate analysis results for the sitting 
posture: V0 (nose), V1 (neck), V2 (right shoulder), V3 (right elbow), V4 (right wrist), V5 (left 
shoulder), V6 (left elbow), V7 (left wrist), V8 (right hip), V9 (right knee), V10 (right ankle), V11 
(left hip), V12 (left knee), V13 (left ankle), V14 (right eye), V15 (left eye), V16 (right ear), and 
V17 (left ear). The schematic diagram of specific human joint points is shown in Fig. 1.
	 When using a visual sensor on a tablet to monitor sitting posture behavior, it is necessary to 
extract specific joint points that align with the guiding principle of “head straight, shoulder flat, 
and body straight.” In this context, V0 (nose), V1 (neck), V2 (right shoulder), V5 (left shoulder), 
V14 (right eye), V15 (left eye), V16 (right ear), and V17 (left ear) are optimal choices as they can 
accurately identify and track the relevant body parts needed for monitoring proper sitting 
posture. By utilizing these joint points and adhering to the guiding principle, it is possible to 
detect and monitor abnormal sitting posture behaviors in real time.

Fig. 1.	 Schematic diagram of human joint point data obtained by OpenPose.
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	 To better monitor and classify abnormal sitting postures, we can divide them into five distinct 
states: head tilt, body tilt, head lowering, reading too close, and extended learning duration. 
However, it is important to consider the unique characteristics of each student’s hyperactivity 
behavior when identifying abnormal posture states. To address this concern and reduce false 
positives, we recommend incorporating the duration of each state in calculating its corresponding 
abnormal index score. Below are the specific characteristics and index calculation formulas for 
each abnormal state.
(1)	The abnormal sitting posture of body tilt is identified by monitoring whether the body tilt 

angle exceeds preset or recommended thresholds and distinguishing whether it is left-leaning 
or right-leaning from to the specific body tilt angle. The body tilt angle is calculated as the 
arctangent function value of the difference between the left and right eye coordinates by the 
difference between the abscissae. The specific calculation formula for the head tilt angle is
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(2)	The abnormal sitting posture of body tilt is identified by monitoring whether the body tilt 
angle exceeds preset or recommended thresholds and distinguishing whether it is left-leaning 
or right-leaning from the specific body tilt angle. The body tilt angle is calculated as the 
arctangent function value of the difference between the left and right shoulder coordinates 
divided by the difference between the left and right shoulder abscissae. The specific 
calculation formula for the head tilt angle is
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(3)	Head lowering refers to an abnormal sitting posture where students read or write with their 
head lowered due to mismatched table and chair heights. This posture can lead to posture-
related health problems such as hunchback. To detect head lowering, we measure the distance 
between the nose and neck using the y-axis and divide it by a threshold value to obtain the 
head lowering amplitude. If the head lowering amplitude exceeds the preset or recommended 
threshold value, the student is considered to be in a head lowering state. The specific 
calculation formula for the head tilt angle is

	 0 1  .v vHead Lowering Amplitude Y Y= − 	 (3)

(4)	Reading too close refers to a situation where students’ eyes are positioned too close to books 
or tablet PCs when reading, which can increase the risk of myopia. To measure the reading 
distance degree, we track changes along the x-axis of a student’s left and right eyes. If the 
reading distance degree exceeds a preset or recommended threshold, it is considered that 
reading is happening too close to the eyes. The specific calculation formula for the head tilt 
angle is
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(5)	A very long learning duration refers to situations where students exceed the recommended 
duration of continuous learning. To prevent eye strain and improve learning efficiency, 
primary and secondary school students are generally advised to take a 10–15 min break 
every 45 min to one hour of study. We can detect learning duration by tracking coordinates of 
the nose and left and right shoulders. When the duration of continuous learning exceeds a 
preset or recommended threshold, it is considered that the student has been studying for too 
long and needs a break to rest their brain and eyes. This information helps promote healthy 
learning habits and prevent potential long-term problems associated with excessive study 
time.

4.	 Design of Abnormal Sitting Posture Detection Process

4.1	 System architecture design

	 The intelligent desk continuously monitors children’s abnormal sitting posture on the basis of 
abnormal sitting posture monitoring algorithms and returns relevant data to the management 
server. The data storage and management server automatically records the number of instances 
of abnormal sitting posture, the duration of each instance, and the video footage of the abnormal 
sitting posture (applicable to the home version) detected by the intelligent desk. The guardian 
app and the teacher app can display detailed information about the child’s abnormal sitting 
posture over a recent period of time. The intelligent desk has two types of user: home users and 
school users. In schools, administrators or homeroom teachers can set abnormal sitting posture 
thresholds by using system-recommended values or personal experience values for each class. If 
there are special circumstances, the student system also supports the ability to adjust settings for 
individual students. Homeroom teachers can view an analysis report for their managed classes 
on the management server that lists the number and duration of abnormal sitting postures for 
each student. With this information, teachers can focus on students who exhibit prolonged 
periods of abnormal learning posture and help them correct it. In home settings, parents can 
adjust the threshold for abnormal sitting posture on the terminal continuously on the basis of 
their child’s actual situation. Parents can log in to the server to view analysis reports of their 
child’s abnormal sitting posture during specific time periods and watch videos to help correct 
their child’s sitting posture. The entire system architecture uses the cloud service model, with 
data storage and management servers, intelligent desk apps, guardian apps, and teacher apps. 
The intelligent desk continually monitors children’s abnormal sitting posture using monitoring 
algorithms and returns relevant data to the management server. The server automatically stores a 
record of the number of abnormal sitting postures observed by the intelligent desk, including 
video footage of duration and occurrence (this only applies to home users). Both the guardian 
app and teacher app can display detailed information on a child’s abnormal sitting posture over 
time. The system architecture for intelligent learning desk is shown in Fig. 2.
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4.2	 Detection process design 

	 The intelligent desk is tailored for primary school senior students and junior high school 
students between the ages of 9 and 18, who experience significant growth in height and weight 
during this period. As such, the monitoring system cannot rely on a fixed threshold to judge 
abnormal sitting posture across all students. Instead, guardians or teachers are required to set 
individualized thresholds based on the unique physical characteristics of each student through 
the interface provided by the system. Additionally, the system automatically shares reference 
values from other terminals to assist in setting appropriate thresholds relative to the student’s 
actual situation. To determine the presence of abnormal sitting posture, the system utilizes Eqs. 
(1) to (4) in combination with the set thresholds to monitor students’ sitting positions. The system 
records the duration of any instances of abnormal posture and notifies students if this duration 
exceeds the set threshold. The system also records the type of abnormal sitting posture present 
to provide additional insight into the student’s behavior. The specific algorithm business flow 
chart is shown in Fig. 3.

Fig. 2.	 (Color online) System architecture for intelligent learning desk.
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Fig. 3.	 Abnormal learning sitting posture detection process.
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5.	 Lightweight improvement of OpenPose

	 To enable the deployment of OpenPose on the intelligent desk’s embedded device, we 
addressed the issue of the large parameter size of the OpenPose model by replacing part of the 
convolution kernel in the prediction network with deep separable convolution. This modification 
reduces the number of parameters within the network, resulting in faster and more efficient 
calculations while ensuring the recognition accuracy. Deep separable convolution is derived 
from Google’s Mobilenet neural network, which was designed specifically for mobile or 
embedded devices. This technique involves feeding an image with N input features (both length 
and width D) to a group of convolution kernels (convolution size H) to output depthwise feature 
maps of N feature images. The depthwise feature map contains spatial features related to each 
channel present in the original image. By convolving these depthwise feature maps with K 1×1 
convolution kernels, a pointwise feature map is produced, which serves as the final result of the 
process. This approach reduces computational complexity throughout the network, making it 
possible to use OpenPose on the intelligent desk’s embedded device without sacrificing 
recognition accuracy. The specific process is shown in Fig. 4.
	 Therefore, the amount of computation required for deep separable convolution is as follows:

	 .dpConv D D N H H D D N K= × × × × + × × × 	 (5)

	 If traditional convolution is used, the calculation amount is as follows:

	 .commConv D D N H H K= × × × × × 	 (6)

	 The ratio of the calculation amount  between depthwise separable convolution and traditional 
convolution is as follows:

Fig. 4.	 Deep separable convolution process.
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	 OpenPose, based on CNN, detects key points of the human skeleton in the supervised 
learning mode and adopts a large convolutional kernel to obtain large receptive fields. The 
network extracts the features of the input picture through the traditional CNN vgg19 to obtain 
the feature map and then inputs the feature map into the two-branch multistage network, which 
includes upper branch prediction affinity and lower branch prediction confidence. Both branches 
adopt the fall prediction method. The specific network structure is shown in Fig. 5.
	 Figure 6 shows the internal structure of the OpenPose network. Except for the first stage in 
the dual-branch multistage network, the other stages adopted the large convolution kernels (7 × 
7). Although large convolution kernels can obtain a larger receptive field, they also cause a large 
amount of computation.
	 To optimize the network structure and reduce computational complexity, a technique used in 
OpenPose is depthwise separable convolution, which replaces large convolution kernels with a 
series of smaller ones. Specifically, a 7 × 7 kernel is replaced by three 3 × 3 kernels in series to 
achieve the same receptive field while markedly reducing the number of parameters. To prevent 
the vanishing gradient problem as the network deepens, skip connections are added between 
every three consecutive convolutions, with a 1 × 1 convolution used for dimensionality reduction. 
This architecture modification reduces the computational cost and improves the overall 
performance of the system. The specific structure is shown in Fig. 7.

Fig. 5.	 Main structure of OpenPose.

Fig. 6.	 Internal structure of OpenPose.
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	 Deep separable convolution is also used to improve each convolution kernel (3×3) in the first 
stage of the two-branch multistage network. The improved double-branch multistage network 
can achieve up to 1/9th of the computational cost compared with the original network through 
this optimization method, as shown in Eq. (7). This technique helps make the network more 
efficient and faster without compromising performance.

6.	 Experimental Results and Analysis

6.1	 Experimental results and analysis of OpenPose lightweight improvement

	 The aim of optimizing OpenPose is to make it suitable for use on lightweight mobile devices 
such as intelligent desk and mobile terminals. The hardware environment was set up using 
NVIDIA’s Jetson TX2 development board and NVIDIA 1080ti GPU. The software environment 
was Ubuntu 20.04 and Python 3.9. To evaluate the performance of the optimized model, the 
COCO2017 dataset was used for comparison. The initial learning rate was set to 4 × 10−5, and 
the back propagator was the Adam optimizer. The number of iterations for training was set to 
250000, and the training batch size was set to 8. The mean average precision (mAP) was selected 
as the evaluation metric, with the ap50 and ap75 used to measure the key point predictors with 
thresholds of 0.5 and 0.75, respectively. By optimizing the network architecture and reducing 
computational complexity, the optimized OpenPose model achieved good results on the 
COCO2017 dataset while remaining lightweight enough to be used on mobile devices. Table 1 
shows that the prediction score of the lightweight OpenPose model is slightly lower than the 
original, but the processing speed per second for video has been significantly improved. Prior to 
optimization, the average video recognition speed was approximately 1.6 s per frame, while after 
optimization, it increased to around 0.7 s. Thus, the computational load of the entire network can 
be considerably reduced without compromising accuracy.

6.2	 Experimental results and analysis of abnormal sitting posture monitoring

	 Currently, there is no standardized dataset available for evaluating sitting posture health that 
meets the specific requirements of this study. Therefore, we utilized self-collected sitting posture 
testing data. In accordance with the GB/T 26158-2010 “Chinese Minor Body Size” standard, 24 
primary school students (12 males and 12 females) ranging from 9 to 18 years old were selected 
as test subjects. Two students (1 male and 1 female) were selected from each age group, ensuring 

Fig. 7.	 Convolution kernel structure after replacement.
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a diverse sample. All the subjects had no history of back pain, had normal or corrected vision, 
were right-handed, and could maintain accurate sitting posture while holding a pen. Additionally, 
all the subjects were confirmed to be healthy for the study. The specific data of the subjects are 
shown in Table 2.
	 Owing to the variation in body size and shape among students of different ages, it is not 
feasible for the monitoring system to use a constant value to judge whether a student’s sitting 
posture is abnormal. Therefore, before recognition, a threshold value for abnormal sitting 
posture must be set in accordance with common sense, which can be adjusted using the system’s 
visual setting functions. To determine the sitting posture, the system uses a portrait alignment 
box, which allows for the accurate detection and analysis of the student’s posture. The threshold 
values of abnormal sitting posture set for different ages are shown in Table 3.
	 To reduce false positives and increase accuracy, the monitoring system sets the duration of 
abnormal posture to a uniform 15 s before triggering a warning. The health status of the 
corresponding sitting posture is then determined by analyzing the threshold data for abnormal 
sitting postures of each individual tester, as shown in Table 3. Furthermore, the system tests each 
abnormal sitting posture ten times in order to focus on recognizing postures that are close to the 
boundary value. By using these methods, the system can effectively reduce errors and provide 
accurate feedback on students’ sitting posture. The recognition accuracy is shown in Table 4.
	 Table 4 indicates that the system has a high recognition rate for abnormal sitting postures 
such as prolonged learning duration, head tilt, body tilt, and head lowering, but its accuracy in 
recognizing reading distance that is too close is low. This is due to the limitation of the OpenPose 
bone node technology, which only provides a plan view of the user. The system can only use the 
distance change on the X axis of the left and right eyes as the reading distance degree.

Table 1 
Evaluation results of OpenPose lightweight improvement.
Model AP (%) AP50 (%) AP75 (%)
OpenPose 63.5 84.3 68.2
This study 61.7 81.5 66.8

Table 2 
Relevant data of  testers.
Project Age (years) Height (cm) Weight (kg)
Maximum value 9 142.5 41.2
Minimum value 18 181.3 73.5

Table 3 
Threshold data of abnormal sitting posture of tester.

Age (years) Head tilt (°) Body tilt (°) Head lowering 
(px)

Reading distance 
(px)

Learning duration 
(min)

9–10 ±70 ±30 0.13 0.013 45
11–12 ±60 ±20 0.14 0.013 45
13–15 ±55 ±16 0.16 0.014 45
16–18 ±50 ±13 0.18 0.015 45
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7.	 Conclusions

	 To effectively monitor and address abnormal sitting postures among primary and secondary 
school students, a stable monitoring system based on OpenPose was implemented. The system 
comprehensively assesses the health of sitting postures by considering three dimensions: human 
posture, critical threshold value, and abnormal posture duration. The performance of the system 
was evaluated through experiments and practice, its effectiveness in detecting and warning 
students about common abnormal sitting postures was demonstrated. The design of the abnormal 
sitting posture monitoring algorithm is based on the feature extraction of various types of 
abnormal sitting posture, as well as the design of an abnormal sitting posture detection process. 
In addition, improvements were made to the OpenPose technology to enable it to be deployed on 
embedded devices with limited processing resources. The experimental process and structure of 
the monitoring system are described in detail, including the selection of test subjects, data 
collection and analysis, and system evaluation. Overall, the results showed that the monitoring 
system was effective in detecting and correcting poor sitting postures among students, and could 
potentially improve the long-term health outcomes of young students.
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