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 Urban land subsidence is one of the important limiting factors for urban development, and 
strengthening the monitoring of urban surface subsidence contributes to long-term urban 
planning and construction needs. As a subcentral city in the Yangtze River Delta region of 
China, it is particularly important for Heifei to enhance the monitoring of surface subsidence. In 
this study, the persistent scatterer interferometric synthetic aperture radar (PS-InSAR) and  
small baseline subset (SBAS) techniques were used to process 139 scenes of Sentinel-1A SAR 
satellite ascending orbit data covering the central urban area of Hefei from July 2015 to July 
2020, obtaining subsidence information for the region. The results show that the overall urban 
area of Heifei is relatively stable, but there are certain deformation trends in local areas. Four 
regions with obvious deformation were selected for the in-depth analysis of their deformation 
time series. The experimental study in this paper demonstrates that the PS-InSAR and SBAS 
techniques can achieve the accurate monitoring of large-scale ground subsidence in urban areas, 
ensuring the safety of buildings and their surrounding environments, and providing information 
support for urban security maintenance monitoring.

1. Introduction

 With the rapid development of China’s social economy and the continuous acceleration of 
urban modernization, land subsidence has become the biggest threat to the rapid development of 
cities and the lives and properties of residents.(1,2) Currently, more than 150 countries around the 
world are facing the risk of urban land subsidence, as urban infrastructures such as buildings, 
highways, airports, and subways are often damaged by changes in the surface space of these 
cities.(3,4) The comprehensive effect of human activities and geological factors is the main cause 
of land subsidence.(5) Land subsidence caused by geological factors is the result of geological 
structures, earthquakes, or the consolidation and compression of loose surface layers under the 
influence of gravity. Urban land subsidence is mainly caused by human activities, including the 
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excessive exploitation of underground resources such as groundwater, minerals, and natural gas, 
as well as the construction of high-rise buildings and underground engineering. To ensure the 
stability of the surface and prevent the occurrence of ground collapse, it has become important 
and practical to conduct the large-scale, high-precision, and long-term ground detection of the 
urban surface.(6–8)

 Traditional methods for detecting land subsidence, such as the use of the global positioning 
system, precise leveling measurements, and total station surveys, are affected by various factors 
such as terrain and equipment installation. Measurement stations are usually sparsely 
distributed, making the long-term maintenance of observation points difficult, time-consuming, 
labor-intensive, and costly; thus, they are unable to meet the needs of large-scale, real-time, and 
high-precision surface deformation detection. In recent years, the Interferometric Synthetic 
Aperture Radar (InSAR) has been widely applied in terrain mapping, surface deformation 
monitoring, and other fields owing to its advantages of all-weather, all-time coverage, wide area 
coverage, and high spatial resolution. It has also found extensive application in urban land 
subsidence monitoring. InSAR-based measurements, relying on the phase information of SAR 
images, as well as a series of other improved time series InSAR methods, including Differential 
InSAR, Persistent Scatterer InSAR (PS-InSAR), Small Baseline Subset InSAR (SBAS-
InSAR),(9) and Multiple Aperture Interferometry (MAI) techniques, are based on the principle 
of time-to-distance imaging. They utilize the complex conjugate multiplication of SAR complex 
images to obtain interferograms and calculate the path difference between two radar waves, thus 
monitoring one-dimensional small deformations along the line-of-sight (LOS) direction of the 
radar wave.(10) Theoretically, the measurement accuracy can reach the millimeter level. Applying 
InSAR technology to the study of urban land subsidence detection in China is of great 
significance for urban planning and governance and for ensuring urban economic development. 
 In this study, we focus on the main urban area of Heifei as the research area and employ the 
PS-InSAR technique along with the SBAS processing method. We utilize a dataset consisting of 
139 Sentinel-1A single-looking complex (SLC) images covering the period from July 2015 to 
July 2020 to conduct a comprehensive five-year deformation monitoring experiment in the main 
urban area of Heifei. The main objective of this research is to assess and demonstrate the 
potential application of InSAR technology in the field of urban land subsidence monitoring.

2. Principle of PSInSAR Technique

 The PSInSAR technique utilizes a time series of synthetic aperture radar (SAR) images 
acquired at different time intervals in the same area. Assuming there are M + 1 SAR radar 
images from different time periods in the study area, one image is selected as the master image 
based on experimental requirements, while the remaining M SAR images serve as slave images. 
These images undergo registration and interferometric processing, with an external Digital 
Elevation Model (DEM)(11) introduced to remove terrain phase effects. This process results in M 
pairs of interferometric image sets, yielding M sets of differential data. By constructing a model 
based on the obtained Permanent Scatterer (PS) points, the subsidence results for the study area 
are calculated.(12–16) In this equation, the phase ∆φ_i for the ith phase can be represented as
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 def _ _ _ _i i topo i atm i noise iϕ ϕ ϕ ϕ ϕ∆ = + + + . (1)

Here, φdef _i represents the deformation phase in the LOS direction caused by surface deformation 
during the imaging period; φtopo_i accounts for the terrain phase introduced by external DEM 
errors; φatm_i corresponds to the phase delay caused by atmospheric disturbances during the 
imaging period; φnoise_i denotes the noise phase, including spatial decorrelation noise, temporal 
decorrelation noise, system noise, and other types of noise, following a Gaussian distribution. 
The processing flow is illustrated in Fig. 1.

3. Principle of SBAS Technique

 The SBAS-InSAR technique employs a time-series analysis approach using a combination of 
interferograms derived from multiple image pairs with short baselines.(17) High-quality 
interferograms are selected by applying a temporal baseline threshold (TBT) and a perpendicular 
baseline threshold (PBT),(18) which effectively filter out interferograms with poor quality. To 
optimize spatial decorrelation, the temporal and spatial baselines between differential 
interferograms should be minimized, enabling the connection of all pairs with short baselines 

Fig. 1. PS-InSAR processing flow.
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within the set. Isolated SAR data with large spatial baselines are also connected, accelerating the 
sampling rate of observation data. Ultimately, several smaller subsets can be formed within the 
existing SAR image dataset, where both temporal and spatial baselines fall within the designated 
threshold range, all linked through a master image.(19)

 Assuming there are M + 1 SAR images covering the study area, acquired at times t0, t1, ..., tm, 
N sets of interferometric pairs can be obtained through freely combined image pairing:

 1 1
2 2

M MN M+ +
≤ ≤ . (2)

 For a pair of SAR images acquired at times ta and tb (tb > ta), the interferogram generated 
from these images is the ith interferogram. The interferometric phase ϕ(i, β) of a specific 
interferometric pixel β in this interferogram is calculated as

 ( ) ( ) [ ],( ), ,
4 ( , ) ( , )

ab t b ai t d t d tββ βφ φ φ β β
λ
π

= − ≈ − . (3)

Here, d(tb, β) and d(ta, β) are the deformation components along the radar LOS direction at times 
tb and ta, respectively. d(tb, β) (i = 1, ···, M) represents the accumulated deformation time series, 
Ф(ti, β) is the corresponding phase, and the unwrapped phase is calculated as
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 Assuming ФT = [Ф(t1), Ф(t2), ..., Ф(tM)] is a vector set composed of phases corresponding to a 
specific pixel in different moments of SAR images,(20) the corresponding interferometric phase 
vector set is

 ( ) ( ) ( )1 2,T
Mt t tφ ϕ ϕ ϕ ∆ = ∆ ∆ ∆ ，， . (5)

 The time series of the master and slave images are represented as IE = [IE1, IE2, ..., IEN] and 
IS = [IS1, IS2, ..., ISM], respectively. If IEi > ISi (i = 1, ···, N), then the interferometric phase of the 
ith interferogram is

 ( )1
IE ISi ii t t i Nφ φ φ= − =  . (6)

 From the above equation, the corresponding matrix expression is

 Aφ σφ= , (7)
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where AN*M is the coefficient matrix, with each row corresponding to each interferogram and 
each column corresponding to each SAR image. When N ≥ M, the least-squares solution can be 
directly obtained:

 ( ) 1ˆ T TA A A σφφ
−

= . (8)

 When N < M, ATA is a non-singular matrix.(21) In this case, the solution of Ф in the least-
norm sense can be found, leading to

 1 0 2 1 1
1 2

1 0 2 1 1
, , ,T M M

M
M M

V V V V
t t t t t t
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−
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 Substituting this into the previous equation yields
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= =∑  . (10)

 Consequently, the matrix budget expression can be transformed into

 BV σφ= , (11)

where BN*M is the coefficient matrix. When ISi+1 < k < IEi, B(i, k) = tk+1 − tk (i = 1,2, ..., N); 
otherwise, B(i, k) = 0. By utilizing the SVD decomposition method, the least-norm solution of 
the velocity vector can be obtained. Finally, integrating the velocities within each time interval 
yields the corresponding deformation components.(22,23) The SBAS processing workflow is 
depicted in Fig. 2.

4. Study Area Overview

4.1 Study area overview

 The study area is the central urban area of Heifei City, with a coverage area of approximately 
12 × 20 km2. Most areas have an altitude between 15 and 80 m, with an average altitude of 20–
40 m. Heifei, as a subcentral city in the Yangtze River Delta urban agglomeration, has 
experienced rapid socioeconomic development in recent years. Monitoring and analyzing the 
land subsidence caused by urban construction in Heifei City are of great significance.

4.2 Data sources

 In this study, 139 scenes of ascending orbit interferometric wide swath (IW) SLC data 
covering the central urban area of Heifei were obtained from Sentinel-1A. The data span from 
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July 2015 to July 2020. The slant range resolution of the data is approximately 2.3 × 13.3 m2 
(range × azimuth), and the average incidence angle is around 39.3°. Precise Orbit Ephemerides 
data, with an accuracy higher than 5 cm, were used as the orbit information, which meets the 
requirements for InSAR data processing. The DEM data used in this study is the Shuttle Radar 
Topographic Mission Global 1, with a resolution of 30 m, obtained from airborne radar terrain 
mapping. The detailed research data parameters are shown in Table 1.

5. Experimental Results and Discussion

5.1 PS-InSAR processing results

 Using the data from January 15, 2018 as the master image, we performed the PS-InSAR 
processing with a spatial baseline threshold of 180 m and a temporal threshold of 840 days, 
resulting in the spatio-temporal baseline distribution of the interferometric pairs as shown 
in Fig. 3.
 In this study, the PS point selection method combining the amplitude dispersion threshold 
and spectral coherence coefficient was employed. A total of 180381 PS measurement points were 
obtained within the 240 square kilometers of the central urban area of Heifei City, with an 
average PS point density of 751.6 points per square kilometer. From the point density distribution, 
the northern part of the study area exhibited a significantly higher density than the southern 

Fig. 2. SBAS processing flow.
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region. This can be attributed to the dense urban construction in the northern part, which has 
more high-coherence point targets. In contrast, the southern region has a relatively higher 
vegetation coverage, especially in the southeast where there is less urban development, resulting 
in a lack of valid measurement signals in certain localized areas. (Comprehensive coverage can 
be achieved by combining the SBAS technique with PSinSAR.) The specific distribution of 
deformation rates is shown in Fig. 4.
 According to the deformation rate distribution in Fig. 4, the overall stability of the urban area 
in Heifei can be observed, with LOS annual average deformation rates ranging from −5 to 5 
mm/year. In particular, the northeastern region of the study area shows minimal deformation 
and is considered the most stable. Localized areas in the central-southern part of the study area 
exhibit certain deformation trends, represented by regions A, B, C, and D in the figure. These 
regions will be further analyzed in subsequent sections. The study area includes several 
important transportation lines, including parts of Metro Line 1, parts of Metro Line 2, the central 
section of Metro Line 3, and certain high-speed railway lines within Heifei. Among them, Metro 
Lines 2 and 3 exhibit overall stability without passing through significant deformation areas, 
while a portion of Metro Line 1 in the southern segment shows deformation, as exemplified by 
region D. Additionally, there are indications of deformation along the railway lines within Heifei, 
including Heifei South Station. The deformation velocity distribution map clearly shows a linear 
distribution of PS points along the railway lines, which align well with the railway tracks, 

Table 1
Research data parameters.
Sentinel-1A Satellite Parameters Value
Acquisition Time Range 2015.7–2020.7
Data Volume/Scene 139
Ascending/Descending Ascending
Imaging Mode Interferometric Wide (IW)
Polarization Mode VV
Incidence Angle (°) 39.3
Resolution/m 2.3 × 13.3 (Range × Azimuth)
Repeat Cycle/d 12

Fig. 3. (Color online) Spatio-temporal baseline of Sentinel-1 data interference.
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indicating that the PSInSAR processing of Sentinel data can provide monitoring results with 
relatively high spatial resolution, meeting the requirements for subsidence monitoring in urban 
areas.

5.2 SBAS processing results

 The data acquired on July 9, 2019 was selected as the master image. The spatial baseline 
threshold was set at 2% of the critical baseline, and the temporal baseline threshold was set at 
120 days. On the basis of these criteria, a total of 139 pairs of interferometric images were 
generated, as shown in Fig. 5.
 After phase unwrapping and removing the effects of flat-earth, DEM errors, orbit errors, and 
atmospheric effects, the surface deformation of the study area was computed. The LOS average 
deformation in the urban area ranged mostly from −10 to 10 mm/year, as depicted in Fig. 6. In 
the deformation map, colder colors represent upward deformation along the LOS direction, while 
warmer colors represent downward subsidence, which aligns with the deformation trend 
obtained through the PS-InSAR processing.
 Overall, the annual average deformation rate results obtained from both techniques show 
good agreement, indicating a high level of consistency between the two methods. Although there 
are slight differences observed in the image results, both methods are considered reliable for 
monitoring land subsidence in urban areas. The use of small baseline distances in the SBAS 
approach helps to avoid spatial decorrelation and reduces the effect of topography on the 
interferograms. The resulting deformation map shows a greater continuity in spatial coverage 
than does the PS-InSAR method.

Fig. 4. (Color online) Distribution of deformation rates in Hefei urban area from July 2015 to July 2020.
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5.3 Spatiotemporal analysis of key deformation areas

 To further analyze the distribution of subsidence velocities in the urban area of Heifei from 
July 2015 to July 2020, we selected four representative deformation areas (highlighted by white 
boxes A, B, C, and D in Fig. 4) for comparative analysis. The aim was to validate the accuracy of 
the results obtained from both PS-InSAR and SBAS with small baselines and to investigate the 
causes of deformation in these areas.

Fig. 5. (Color online) Interferogram connectivity graph and spatiotemporal baseline distribution.

Fig. 6. (Color online) Annual mean deformation rate of SBAS LOS.
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5.3.1. Anhui Jiatong Tire Factory area

 From Fig. 4, it can be observed that Area A exhibits positive deformation signals, and optical 
image comparison reveals that this area corresponds to the Jiatong Tire Factory in Anhui. To 
further analyze the deformation characteristics and evolution of this area, a specific point within 
Area A was selected to analyze its deformation time series, as shown in Fig. 7. The deformation 
time series reveals that the LOS direction in this area demonstrates a linear deformation trend 
with a pronounced periodic deformation pattern. It shows an upward expansion (positive 
deformation) during the summer and a downward contraction (negative deformation) during the 
winter, with vibration amplitudes ranging from −20 to +20 mm. This phenomenon is attributed 
to the thermal expansion and contraction of the steel structure in the tire factory, causing cyclic 
deformation in response to seasonal temperature variations. This observation confirms the high 
precision of InSAR technology in urban areas, which is capable of accurately capturing 
deformations caused by temperature-induced changes in steel frame structures.
 The consistency between the subsidence trends obtained from SBAS and PS-InSAR 
technologies confirms their accuracy to a certain extent. Trend analysis further verifies the 
seasonal temperature variations in the steel frame structure of the tire factory. Considering the 
contamination of periodic signals in the linear deformation trend, we performed a simple 
modeling using a sine function to estimate the effects of thermal expansion and contraction. The 
resulting linear deformation trend time series after removing this component is shown in Fig. 8, 
indicating a linear deformation trend of approximately 1.6 mm/year in the tire factory area. 
However, since the simple trigonometric function fitting does not precisely capture the changes 
in the thermal expansion and contraction of the steel frame structure, the accuracy of the 

Fig. 7. (Color online) Deformation time series from July 2015 to July 2020 in Jiatong Tire Factory area of Anhui 
Province.

Fig. 8. (Color online) Time series of regional linear deformation trend of Jiatong Tire Factory in Anhui Province.
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deformation trend time series is affected. Therefore, in future studies, it is necessary to establish 
a rigorous deformation model for the thermal expansion and contraction of the steel frame 
structure on the basis of temperature data, in order to more accurately remove the periodic 
signal.

5.3.2. Heifei South Station

 From Fig. 4, it can be observed that Area B exhibits positive deformation signals, and optical 
mapping reveals that this area corresponds to Heifei South Station, a high-speed railway station. 
Similarly, to further analyze the deformation characteristics and evolution of this area, a specific 
point within Area B was selected to analyze its deformation time series, as shown in Fig. 9. The 
results indicate that Heifei South Station has also experienced thermal expansion and contraction 
due to temperature variations in its steel frame structure, with a LOS amplitude range of 
approximately ±25 mm. It can be observed that there is a significant fluctuation during the 
summer, and the subsidence trend shown by PS-InSAR and SBAS in the LOS direction is 
generally consistent. Furthermore, note that starting from 2017, there is a slight uplift during the 
winter and summer compared with the same period in the previous year. Since there are no new 
buildings observed in the vicinity, it can be inferred that this is due to the construction of Metro 
Line 5. During the construction and operation of the subway, the initial stage of subsidence is 
small, but as concrete is poured, the base rebounds and undergoes uplift deformation, resulting 
in ground uplift phenomena. By using the trigonometric function fitting to remove the periodic 
signal, the linear deformation trend time series of this area was obtained, as shown in Fig. 10. 
The results indicate a stable deformation trend of approximately 2.5 cm/year in this area, which 
requires further observation of its deformation trend.

Fig. 9. (Color online) Deformation time series of Hefei South Railway Station from July 2015 to July 2020.

Fig. 10. (Color online) Time series of linear deformation trend in Hefei South Railway Station.
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5.3.3. University college

 Area C exhibits negative deformation signals, mainly corresponding to the university college. 
Figure 11 shows the deformation time series of this area from July 2015 to July 2020. From the 
time series, it can be observed that the deformation in the LOS direction fluctuated around zero 
from 2015 to the first half of 2018, indicating a relatively stable state during that period. 
However, a rapid subsidence signal was obtained from June 2018 to September 2019, with the 
deformation quickly changing from zero to −20 mm, followed by a relatively stable state up to 
the present.
 Using optical imagery from Tianditu, as shown in Fig. 12, we observed that there were 
significant changes in the buildings on the university campus during the period from July 2018 
to September 2019. This corresponds precisely to the rapid deformation period revealed by 
InSAR monitoring. It is preliminarily inferred that this deformation is due to geological 
subsidence caused by changes in the campus planning. This experiment further demonstrates 
the capability of InSAR technology to accurately capture surface deformation information.

5.3.4. Anhui Geological Information Museum area

 Area D is located near the No. 1 subway line, with the main building being the Anhui 
Geological Information Museum (Fig. 13). The results indicate a LOS deformation trend of 
approximately 4 mm/year in this area. As shown in Fig. 14, through the time series analysis, it is 
observed that this area also exhibits a certain periodic deformation trend. However, compared 
with the previous cases A and B, the signal in this area is more complex. The periodic signal was 
more pronounced before 2019 but disappeared afterward. Before 2019, the subsidence remained 
around ±10 mm/year, and afterward, it showed a fluctuating pattern and eventually stabilized. 
According to investigations, the Anhui Geological Information Museum is located on Jinxiu 
Avenue, near the Shiwuli River, with mostly farmland in the vicinity and the ongoing 
construction of Luzhou Avenue. It is speculated that the subsidence may be caused by the 
irrigation of farmland and the extraction of groundwater. Further analysis is required to combine 
these results with actual conditions.

5.4 Cross-validation

 Randomly selecting 10000 validation points within the study area, we expanded each point 
outward with a radius of 30 m to find the nearest PS points within the radius. The LOS annual 
average subsidence rates obtained from both methods were cross-validated and analyzed. If no 
PS points were found within the radius, the validation point was considered invalid. In the end, 
3488 PS and 4277 SBAS validation points were obtained.(24) After statistical analysis, a normal 
distribution curve was obtained, as shown in Fig. 15. The relative error between the two 
inversion results was 1.5 mm/year, which falls within the accuracy range of 5 mm/year. To 
demonstrate the consistency of the results from both methods more intuitively, a linear fit was 
performed on the valid validation points, resulting in a linear relationship of 0.95, as shown in 
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Fig. 11. (Color online) Deformation time series of college area from July 2015 to July 2020.

Fig. 12. (Color online) Optical remote sensing image of university college: (a) July 2018, (b) September 2018, and 
(c) February 2019.

(a) (b) (c)

Fig. 14. (Color online) Deformation time series of Anhui Geological Archive from July 2015 to July 2020.

Fig. 13. (Color online) Satellite map of Anhui Geological Information Museum.
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Fig. 16. This indicates a high degree of consistency between the two methods regarding annual 
average subsidence rates and verifies the reliability of both methods for monitoring urban land 
subsidence.(25)

 In conclusion, the four selected regions in the Sentinel-1A data exhibit a consistent linear 
deformation trend, and the results obtained from both the PSInSAR and SBAS techniques are in 
agreement. Since the leveling data for the period 2015–2020 in the Heifei area was not available, 
the accuracy of the land subsidence results obtained using SBAS and PSInSAR techniques 
cannot be directly verified. However, by comparing and analyzing the results with existing 
research findings, the reliability of these two temporal InSAR techniques for the accurate 
monitoring of urban land subsidence in the Heifei area can be indirectly validated. Furthermore, 
the linear relationship between the annual average subsidence rates calculated by the PSInSAR 
and SBAS methods provides further confirmation of the accuracy of both methods.

6. Conclusion

 In this study, we utilized PSInSAR and SBAS techniques to conduct LOS-based land 
subsidence  monitoring experiments using the near five-year ascending orbit data of Heifei City 
acquired by Sentinel-1A SAR. The research obtained LOS-based land subsidence information in 
the study area. The monitoring experiment results revealed that the overall Heifei urban area 
remains relatively stable, but certain localized regions exhibit deformation trends. Typical areas 
showing such trends include the Anhui Jiatong Tire Factory, the northern and eastern sections of 
Heifei South Station’s building and nearby railway tracks, university colleges, and the Anhui 
Provincial Geological Data Museum. The analysis of these four representative regions 
demonstrates that both PSInSAR and SBAS techniques exhibit characteristics such as high 
measurement accuracy, wide coverage, and high spatiotemporal resolution. They can provide 
effective means for the accurate monitoring of large-scale land subsidence in urban areas, 
offering significant potential for various applications.
 On the other hand, there are still some areas for improvement in the current study, including 
the following: (1) The resolution of Sentinel-1A data is 20 × 5 m, which allows for obtaining the 
deformation distribution over a large area. However, higher-resolution SAR data is required for 

Fig. 15. (Color online) Average annual subsidence 
rate and normal distribution curve of PS-INSAR and 
SBAS.

Fig. 16. (Color online) Linear relationship between 
PS and SBAS annual average subsidence rates.
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fine-scale monitoring. (2) Simple sinusoidal function fitting is insufficient to accurately remove 
periodic deformation signals observed in localized areas. It is necessary to incorporate external 
data such as temperature and groundwater levels to further optimize the model and achieve the 
precise removal of periodic signals. (3) The PSInSAR technique primarily measures signals 
from stable reflectors such as buildings and bridges, making it challenging to capture surface 
deformation signals in bare land and vegetated areas. This limitation results in the inability to 
obtain effective measurement signals in certain critical local areas in cities, such as along 
subway lines. To achieve comprehensive coverage, it is necessary to complement the 
measurements using the SBAS technique, which can be combined with PSInSAR for monitoring. 
(4) Although a considerable number of images were used in the experiment, only the ascending 
orbit data from Sentinel-1A was utilized. Interpreting the results from a single orbit is relatively 
difficult, and it is necessary to further supplement and process descending orbit data to integrate 
and interpret both ascending and descending results.
 The experiments in this study demonstrate that time-series InSAR monitoring technology 
performs well in high-precision deformation monitoring. However, it is only aimed at the 
deformation in the LOS direction. In future applications, it is recommended to use Earth 
curvature correction and elevation data, and use triangulation to convert the deformation in the 
LOS direction into vertical displacement. The results should be integrated with the ground 
measurement data of the Beidou(1) Navigation Satellite System (BDS) to improve the accuracy of 
monitoring results. 
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