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	 We developed a practical approach to locate individual open-field broccoli plants with a 
position error of less than 5 cm, using the georeferenced high-resolution orthomosaic imagery 
generated through the unmanned aerial vehicle-based photogrammetry and the YOLOv5 object 
detection model. The feasibility of our method was evaluated on the basis of two angles: the cost 
of preparing training data and the accuracy of object detection. The orthomosaic imagery was 
generated for two plots: Plot A, which experienced large variations in plant growth due to 
drought-induced mortality and replanting, and Plot B, which showed small variations under 
normal growing conditions. On the basis of the result of analysis under our recommended 
settings for the training data, we found that (1) the detection accuracy improved with an increase 
in the amount of training data in both Plots A and B; (2) in Plot A, 95% of a total of 21277 plants 
were detected using training data for approximately 630 plants selected to represent the 
individual differences in growth; and (3) in Plot B, 98% of all 7836 plants were detected using 
training data for approximately 126 plants selected randomly. Our findings can guide the 
optimal balance between the cost of training data preparation and the desired accuracy level of 
object detection in precision crop management, particularly for broccoli production.

1.	 Introduction

	 The attention towards smart agriculture technology has increased in recent years as a means 
of improving productivity and efficiency in crop management.(1,2) The main goal of smart 
agriculture is to optimize the use of resources such as water, fertilizer, and pesticides and to 
predict the best time and yield for harvest by using data on weather conditions, field environment, 
and plant growth.(2) This data-driven approach leads to the effective management of crops 
grown in open fields.(2) Although attempts have been made to optimize and predict crop 

mailto:shimazaki@c.kisarazu.ac.jp
https://doi.org/10.18494/SAM4364
https://myukk.org/


3778	 Sensors and Materials, Vol. 35, No. 10 (2023)

management, they have primarily been focused on the field or plot level within a field, rather 
than the individual plant level.(3,4) To achieve more precise crop management, it is necessary to 
focus on optimization and prediction at the individual plant level, utilizing accurate data on the 
location of each plant.
	 Determining the locations of individual plants in an open field can be accomplished by using 
the georeferenced high-resolution orthomosaic imagery generated by photogrammetry with 
unmanned aerial vehicles (UAVs).(5) This imagery allows for the estimation of individual plant 
locations through both human image recognition and more efficient computer-based image 
processing techniques. However, the visual inspection is not a practical method for completing 
the task of precisely locating all plants in a field, because it is labor-intensive and time-
consuming. Conventional image processing techniques, such as template matching,(6) Hough 
transform,(7) and image segmentation,(8) have been used to recognize individual plants on the 
basis of their morphological characteristics, but their versatility is limited and their effectiveness 
is largely impacted by the shape and size of the target.
	 Machine learning and deep learning have also been utilized to efficiently detect plant 
locations from imagery. Machine learning algorithms, such as Random Forest and Support 
Vector Machine, have been utilized to distinguish between plants and background soil on the 
basis of spectral and geometric features.(9–12) These algorithms have high classification 
performance, but local radiometric distortions in orthomosaic imagery can hinder their success. 
Deep learning algorithms designed for general object detection, such as YOLO, Faster regional  
convolutional neural network (R-CNN), and Mask R-CNN, have gained popularity in identifying 
individual plants as they are more robust to image quality variations.(13,14) However, training 
these algorithms requires a large amount of high-quality training data, creating a trade-off 
between the cost of training data preparation and the performance of object detection.
	 We estimated the locations of individual broccoli plants (Brassica oleracea var. italica) 
grown in open fields using the georeferenced high-resolution orthomosaic imagery generated 
through UAV-based photogrammetry and the YOLOv5 object detection algorithm. The 
practicality of our method was evaluated from two angles: the cost of generating training data 
and the detection accuracy. Our results will offer guidelines for finding the optimal balance 
between the cost of training data generation and the desired accuracy level of object detection in 
precision crop management, particularly for broccoli production. 

2.	 Materials and Methods

2.1	 Orthomosaic imagery for broccoli test plots

	 Georeferenced high-resolution orthomosaic imagery was generated for two broccoli test 
plots, Plots A and B, to examine the impact of the difference in plant growth level on object 
detection performance. Plot A was grown under unfavorable conditions, causing several plants 
to die in two weeks after planting owing to drought and requiring replanting. This resulted in 
significant variations in growth among individual plants. In contrast, Plot B was grown under 
normal conditions, resulting in relatively small differences in growth among individual plants. 
The shapes and dimensions of the two plots are depicted in Fig. 1.
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	 The orthomosaic imagery for two broccoli test plots was generated through UAV-based 
photogrammetry with a DJI Phantom 4 RTK (P4RTK) and Agisoft Metashape software version 
1.8.4. Aerial photography was conducted 2 and 4 weeks after planting broccoli in Plots A and B, 
respectively. The P4RTK was flown at a height of 25 m above the ground, capturing multiple 
aerial images with an RGB camera mounted on it. The camera’s shutter speed was set to 1/1000 
s, and the shooting direction was set at different off-nadir angles of 0 and 30° to reduce the 
systematic distortion known as the “doming distortion,”(15) which can occur in the Structure-
from-Motion and Multi-View-Stereo (SfM-MVS) process. The aerial images had a spatial 
resolution of approximately 7 mm and an end-lap and side-lap rate of 80%. These multiple aerial 
images were merged into a georeferenced orthomosaic imagery for each test plot using the SfM-
MVS function in Metashape. The resulting orthomosaic imagery had a spatial resolution of 
approximately 7 mm for each plot. 
	 As described in the following subsections, the georeferenced high-resolution orthomosaic 
imagery, generated using the aforementioned method, was used to estimate the locations of 
broccoli. It is important to note that the decision to not utilize individual aerial images captured 
without overlaps for estimating broccoli locations was based on two reasons. The primary 
reason was to accurately estimate the geographic coordinates of the aerial image center and the 
shooting range, while the second reason was to reduce the cost of preparing training data for the 
object detection algorithm. The details of these reasons are described below.
	 In general, four types of information are necessary to determine the geographic coordinates 
of the aerial image center and the shooting range: (1) the position of the lens center during aerial 
photography; (2) the camera tilt angles during aerial photography; (3) optical parameters within 
the camera, including focal length, principal point displacement, and lens distortion; and (4) the 
surface height of the terrain and objects in the target area. 
	 The P4RTK employs the real time kinematic (RTK) method to measure the 3D position of the 
lens center during aerial photography. The resulting data is recorded in the metadata of each 

Fig. 1.	 (Color online) Shapes and dimensions of broccoli test plots: (a) Plots A and (b) B. Red areas, overlaid on the 
georeferenced high-resolution orthomosaic imagery, denote the extent of Plots A and B. The numbers of individual 
plants identified were 21277 in Plot A and 7836 in Plot B.

(a) (b)
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aerial image. However, the P4RTK lacks the capability to measure or maintain the camera tilt 
angles during aerial photography. As a result, the camera tilt during image capture, affected by 
variations in aircraft flight speed and direction, as well as changes in wind speed and direction, 
remains unknown. Moreover, information regarding the camera’s internal optical parameters 
and the surface height of the terrain and objects in the target area is also unavailable. To 
overcome these limitations, we estimated the aforementioned factors (1) to (4) by utilizing 
multiple aerial images captured with a high overlap ratio and employing the SfM-MVS method. 
It is important to note that the lens-center position measured by the RTK method at the time of 
aerial photography was used as an initial value for accurately estimating factors (1) to (4).
	 While it is possible to determine the geographic coordinates of the center position of the 
aerial image and the shooting range by estimating factors (1) to (4), each aerial image utilizes 
frame central projection. As a result, the terrain and objects in the image may appear to lean 
outward from the nadir point based on their height. This distortion caused by central projection 
can introduce variations in the appearance of broccoli, even when the variety and growing 
conditions are the same. Moreover, the central projection can affect the background appearance 
of broccoli depending on the relative positions of the camera and the target object, and it can also 
lead to the overlapping of adjacent broccoli, reducing visibility. These changes in appearance, 
background, and visibility significantly impact the performance of object detection algorithms.
	 On the other hand, the orthomosaic imagery is a composite of each aerial image that has been 
converted from the center projection to an orthographic projection, resulting in every point 
being represented as if viewed from directly above. Consequently, when utilizing orthomosaic 
imagery to estimate the location of individual broccoli, there is no longer a need to consider the 
impact of changes in appearance, background, and visibility. This, in turn, is expected to reduce 
the cost of preparing training data for object detection algorithms. Moreover, the use of 
georeferenced orthomosaic imagery simplifies the conversion of detected positions of individual 
broccoli in the image into geographic coordinates, thereby streamlining subsequent data 
processing for crop management. 
	
2.2	 Background soil and weeds

	 Aerial images of the open field captured not only the broccoli plants to be detected but also 
backgrounds such as soil and weeds. When utilizing an object detection algorithm to identify 
broccoli in an orthorectified mosaic imagery generated from a collection of these aerial images, 
variations in background conditions can impact the detection performance. The following two 
reasons outline why background conditions affect the detection performance:
(1)	�When there is a low contrast between the broccoli plants and the background, or when the 

color or texture of broccoli is similar to the background, the performance of the object 
detection model is expected to decrease. This problem is particularly likely to occur when the 
leaves and stems of broccoli being detected have a similar color to the background soil or 
when the background contains numerous weeds with a similar appearance to broccoli.

(2)	�If the background includes distinctive colors, textures, or patterns, these factors can affect the 
performance of the object detection model. It is important to ensure that the object detection 
algorithm does not incorrectly learn distinctive colors and textures caused by wet or coarse 
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soil clods, as well as identifiable patterns such as footprints or dirt ruts, as crucial features for 
detecting broccoli.

	 The soil color in both Plots A and B was observed to be either light or dark brown (Fig. 1), 
creating a distinct contrast with the green color of healthy broccoli plants. Furthermore, the 
aerial images of Plots and Plot B were captured 2 and 4 weeks, respectively, after planting 
broccoli in a carefully maintained field with rows, where weeds were effectively controlled. As a 
result, there were relatively fewer weeds present in these test plots, aside from the targeted 
broccoli plants. Consequently, concerns regarding potential detection errors associated with the 
factors mentioned in (1) above were considered to be minimal.
	 On the other hand, careful consideration was required for the background features and 
patterns mentioned in (2) above. In the planting areas of Plots A and B, the footprints and vehicle 
ruts left by farmers created distinct patterns in the orthomosaic imagery (Figs. 2 and 3). If these 
features and patterns were included in the annotations used to train the object detection 
algorithm, the model might learn not only the features of the broccoli plants but also those of the 
background soil. To address this issue, we investigated the optimal size of the annotations.

Fig. 2.	 (Color online) Image chips cropped from the georeferenced high-resolution orthomosaic imagery.

Fig. 3.	 (Color online) An example of annotation bounding boxes with different sizes (black outline), overlayed on 
the image chip with a size of 640 × 640 pixels, which was cropped from the orthomosaic imagery of Plot A.
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2.3	 Ground reference data

	 Ground reference data for the locations of individual broccoli plants in Plots A and B were 
generated through the visual inspection of the georeferenced high-resolution orthomosaic 
imagery. Specifically, the center of each plant body was precisely identified, and its geographic 
coordinates were determined from the orthomosaic imagery. In total, we identified 21277 
individual plants in Plot A and 7836 in Plot B by this method.

2.4	 Object detection algorithm

	 The YOLOv5 object detection algorithm was utilized to estimate the locations of individual 
broccoli plants in the georeferenced orthomosaic imagery. YOLO stands for “You Only Look 
Once” and is a state-of-the-art, real-time object detection algorithm.(16) Unlike R-CNN and the 
single-shot multibox detector (SSD), which repurpose classifiers for detection, YOLO frames 
object detection as a regression problem that predicts spatially separated bounding boxes and 
associated class probabilities. With a single neural network, it predicts these values directly from 
full images in one evaluation. This end-to-end single network architecture allows for 
optimization directly on detection performance, leading to YOLO’s reported superior speed and 
accuracy in comparison with other object detection algorithms such as R-CNN and SSD.(17)

	 YOLOv5 that was released in June 2020 is one of the versions of the YOLO series. It has four 
training models: YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, which vary in terms of 
detection accuracy and computational speed.(18) However, there has been evidence suggesting 
that there is no significant difference in detection performance for a single class of objects 
among the four models.(17,19) In light of this, in this study, which only focused on detecting 
broccoli, we used the fastest YOLOv5s model to train the model and perform object detection.

2.5	 Training data preparation

	 The performance of object detection models and the cost of training them are closely related. 
In general, the higher the performance of a model, the higher the cost of training the model. To 
determine the optimal balance between the cost of generating training data and the desired 
accuracy level of object detection, we assessed the impact of four factors on object detection 
accuracy: (1) the size of image chips used for annotation when cropped from the orthomosaic 
imagery; (2) the method employed to crop the image chips from the orthomosaic imagery; (3) the 
size of the annotations surrounding individual target plants captured in an image chip; and (4) 
the total number of annotations. Initially, we explored the optimal settings for factors (1) to (3). 
Subsequently, while maintaining the optimal settings for factors (1) to (3), we examined the 
impact of factor (4) on object detection accuracy. The specific settings for each factor are 
described below.
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2.5.1	 Size of image chips for training

	 The orthomosaic imagery was too large in terms of file size to serve as an image chip in the 
YOLOv5 training process. Additionally, during the training, the image chips are automatically 
resized to 640 × 640 pixels, which could potentially impact the detection performance of the 
trained model by compromising important features for object detection. To assess the effect of 
resizing the image chip on detection performance, image chips were extracted from the 
orthomosaic imagery at different sizes: 2560 × 2560, 1280 × 1280, and 640 × 640 pixels. The 
image chip with a size of 2560 × 2560 pixels was first cropped from the orthomosaic imagery, 
then divided into four parts to create image chips with a size of 1280 × 1280 pixels, and finally 
divided into 16 parts to create image chips with a size of 640 × 640 pixels (Fig. 2).

2.5.2	 Method of cropping image chips for training

	 Since substantial variations in plant growth were observed in Plot A, the detection 
performance of the trained model may vary depending on whether the image chips were cropped 
to reflect these variations or cropped randomly, even if the size of the image chips was the same. 
To address this issue, we compared two cropping methods in Plot A: “stratified cropping”, which 
considered the growth variations by selecting appropriate cropping positions, and “random 
cropping”, which selected cropping positions randomly. In Plot B, where only small variations in 
plant growth were observed, only random cropping was used to extract image chips. 

2.5.3	 Annotation size

	 Annotation data was prepared for each image chip to be used in the YOLOv5 training 
process. The annotation data consisted of three elements: (1) the object class, represented by an 
arbitrary integer that distinguished the object to be detected from others; (2) the object 
coordinates, represented by the pixel coordinates of the center of the bounding box that 
surrounded each individual object to be detected in the image chip; and (3) the height and width 
of the bounding box, which indicated the size of the annotation.
	 The object class was fixed at 1 since the focus was solely on detecting broccoli. For each 
individual broccoli plant captured in an image chip, the object coordinates were calculated using 
the pre-prepared ground reference data. To assess the effect of annotation size on detection 
performance, we varied the height and width of the bounding box, setting them at different 
square sizes: 20 × 20, 15 × 15, 10 × 10, 5 × 5, and 3 × 3 cm for Plot A (Fig. 3), and 30 × 30, 
25 × 25, 20 × 20, 15 × 15, and 10 × 10 cm for Plot B. The differences in the sizes of the bounding 
boxes between Plots A and B were due to variations in the growth levels of the plants. 

2.5.4	 Total number of annotations

	 To investigate the impact of different annotation quantities on detection performance, we 
varied the total number of annotations for the YOLOv5 training process by adjusting the number 
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of image chips. As previously mentioned, image chips were extracted from orthomosaic imagery 
using stratified or random cropping in Plot A and only random cropping in Plot B. The number 
of broccoli plants captured in an image chip can vary depending on the image chip size and 
cropping position from which the image chip is extracted, regardless of the cropping method 
used. Therefore, we increased the number of annotations by gradually adding image chips with 
the same size while changing their combinations.

2.6	 Model training and prediction

	 To determine the optimal balance between the cost of generating training data and the desired 
level of accuracy, we trained object detection models using the training data prepared under 
different settings. Subsequently, we used the trained models to detect individual plants in the 
orthomosaic imagery and evaluated their detection accuracy on the basis of the metrics explained 
in the next subsection. The experiment settings used for preparing the training data, which 
consisted of a set of image chips and their corresponding annotations, are summarized in 
Table 1. 
	 Since it is impractical to train the model using all possible combinations of training data 
settings, we investigated the impact of different settings in three steps. In the first step, we 
assessed the effects of different image chip and annotation sizes on detection accuracy. We used 
the random cropping method for extracting image chips and approximately 1000 annotations, 
based on the orthomosaic imagery of Plot A. An annotation quantity of approximately 1000 
corresponds to the number of individual plants captured in an image chip with a size of 
2560 × 2560 pixels, a set of four image chips with a size of 1280 × 1280 pixels, and a set of 16 
image chips with a size of 640 × 640 pixels. 
	 In the second step, we assessed the effect of annotation size on detection accuracy under the 
optimal setting for image chip size. We used the orthomosaic imagery of Plots A and B, keeping 
the cropping method of image chips as random cropping with an annotation quantity of 
approximately 1000 plants. In the final step, we assessed the impact of different image chip 
cropping methods and annotation quantities on detection accuracy, while keeping the optimal 
settings for image chip size and annotation size. We used the orthomosaic imagery of Plots A 
and B for this evaluation.

Table 1
Experiment settings used for preparing training data.

Test plot Image chip Annotation
Size (pixels) Cropping method Size (cm2) Quantity

Plot A
2560 × 2560
1280 × 1280
640 × 640

Random cropping
Stratified cropping

20 × 20
15 × 15
10 × 10
5 × 5
3 × 3

Ca. 60–1800 plants

Plot B 640 × 640 Random cropping

30 × 30
25 × 25
20 × 20
15 × 15
10 × 10

Ca. 60–1000 plants
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	 Note that the trained model was used to detect individual plants within the georeferenced 
high-resolution orthomosaic imagery. However, the size of the orthomosaic imagery made it 
unsuitable for use in the YOLOv5 prediction process. Therefore, we created a set of image chips 
with the same size as the training image chips to use for prediction. The prediction image chips 
were obtained by cropping the orthomosaic imagery with 50% overlaps between adjacent image 
chips, ensuring that all individual plants were fully captured in a set of image chips.
	 To account for potential variations in detection accuracy caused by differences in the 
cropping position of the training image chips extracted from the orthomosaic imagery, we 
conducted the model training and prediction process 20 times. In each repetition, we utilized 
different sets of image chips cropped from various positions in the orthomosaic imagery, along 
with their corresponding annotations, while maintaining the same training data settings.

2.7	 Model evaluation

	 The center coordinates of individual plants in the ground reference data were used as the 
correct positions, and those of the bounding boxes predicted with the trained model were used as 
the predicted positions. Cases where the distance between the correct and predicted positions 
was less than 5 cm were classified as true positive (TP), whereas those where the distance was 
greater than 5 cm were classified as false positive (FP). Cases where the object detection method 
failed to generate a predicted position within 5 cm of the correct position were classified as false 
negative (FN). As there can be an infinite number of true negative (TN) cases, where the trained 
model did not generate a predicted location outside of a 5 cm radius from the correct location, we 
did not classify them.
	 The performance of the trained model was evaluated on the basis of commonly used metrics 
in object detection, such as precision, recall, and F1 score.(20) Precision measures the proportion 
of correct detections [Eq. (1)]. A high precision indicates that the model is making few FP 
detections. Recall measures the proportion of actual objects that are correctly detected by the 
model [Eq. (2)]. A high recall indicates that the model is making few missed detections. The F1 
score is the harmonic mean of precision and recall [Eq. (3)], providing a single metric that 
balances both precision and recall. A high F1 score indicates good overall performance of the 
model. 
	 As explained in the previous subsection, we repeated the model training and prediction 
process 20 times using different sets of image chips and corresponding annotations, all of which 
were obtained by cropping from various positions of the orthomosaic imagery under the same 
training data settings. We considered models with median scores from the 20 repetitions 
exceeding 0.95 for all three metrics to have practical detection performance.
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3.	 Results and Discussion

	 The locations of individual broccoli plants (Brassica oleracea var. italica) in open fields were 
predicted with an error of less than 5 cm, using the georeferenced high-resolution orthomosaic 
imagery generated through UAV-based photogrammetry and the YOLOv5 object detection 
algorithm. The bounding boxes detected in the image chips sizes of 2560 × 2560, 1280 × 1280, 
and 640 × 640 pixels are shown in Fig. 4. 
	 Detection accuracy in terms of precision, recall, and F1 score varied among the models 
trained under the different training data settings. On the basis of the results of the analysis using 
the orthomosaic imagery of Plot A, it was found that the most stable detection performance was 
achieved when using the image chip with a size of 640 × 640 pixels [Fig. 5 (a)]. When the image 
chip size was 2560 × 2560 pixels and the annotation sizes were 3, 5, and 10 cm, the precision, 
recall, and F1 scores were all below 0.3. The same was true when the image chip size was 1280 × 
1280 pixels and the annotation size was 3 cm. This could be due to the resizing effect of the 
image chips, where larger chip sizes, such as 2560 × 2560 or 1280 × 1280 pixels, compromise 
important features for object detection surrounded by smaller annotations. Therefore, the 
optimal image chip size was determined to be 640 × 640 pixels.
	 Even with image chips optimized at 640 × 640 pixels, the detection accuracy varied 
depending on the annotation size in Plots A and B [Figs. 5(a) and 5(b)]. Practical detection 
performance was achieved with an annotation size of 5 cm for Plot A and annotation sizes of 10 
and 15 cm for Plot B. The diameters of the plants in Plot A ranged from a maximum of 10 cm to 
a minimum of 3 cm, with an average of 5 cm. In contrast, the diameter of the plants in Plot B 
was generally 10 cm. On the basis of these findings, we recommend matching the annotation 
size to the size of the individual plants to be detected to achieve a higher detection performance. 
	 If the annotation size is set larger than the plant body, the object detection model will learn 
not only the features of the plant body but also the background soil pattern. This has both 
advantages and disadvantages: FPs may be detected if the soil patterns are similar even in areas 

Fig. 4.	 (Color online) The bounding boxes predicted with the trained object detection model were overlaid on the 
image chips cropped from the orthomosaic imagery in Plot A, with sizes of (a) 2560 × 2560, (b) 1280 × 1280, and (c) 
640 × 640 pixels.

(a) (b) (c)
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where individual plants are not present, while TPs may be based on the soil pattern even when 
individual plants are not clearly visible in the image. Conversely, if the annotation size is set 
smaller than the plant body, it is likely to detect local features of individual plants, resulting in 
duplicated detections of the same individual or making it difficult to distinguish them from other 
non-target plants, which can increase the FP rate. 
	 As outlined in Sect. 2.2, the performance of the object detection algorithm can be affected by 
backgrounds such as soil and weeds, in addition to the appearance of the target being detected. 
For instance, when there is a low contrast between broccoli and background, or when the color 
or texture of broccoli closely resembles the background, it is expected that the performance of 
the object detection model will decrease. However, this issue is unlikely to arise in a typical 
open-field broccoli growing environment. In both Plots A and B, there was a clear contrast 
between broccoli and the background, and there were minimal similarities in color and texture 
between broccoli and the background. Moreover, by aligning the annotation size with the size of 
the detection target, as explained previously, the impact of distinct colors, textures, or patterns 
present in the backgrounds, caused by wet or coarse soil clods, footprints, or dirt ruts, on the 
overall detection performance could be effectively reduced. Therefore, our method remains 
applicable even when there are distinct colors, textures, or patterns in the background.
	 The impact of different image chip cropping methods and annotation quantities on detection 
accuracy, while maintaining the optimal settings for image chip size and annotation size, is 

Fig. 5.	 Effects of different image chip and annotation sizes on detection accuracy. Image chips were extracted 
using the random cropping method from the orthomosaic imagery in both Plots A and B, and each set of image chips 
was annotated with approximately 1000 plants. The dashed lines indicate the practical detection performance level 
of 0.95, as defined in this study.
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shown in Fig. 6. Increasing the number of training image chips improved the detection accuracy 
in both Plots A and B. In Plot A, practical detection performance was achieved with more than 
10 image chips extracted by stratified cropping or more than 11 image chips extracted by random 
cropping. Stratified cropping, which accounts for growth differences, achieved practical 
performance with slightly less training data. In Plot B, where there were few differences in plant 
growth, the model trained with two or more image chips extracted by random cropping achieved 
a detection performance exceeding 0.98 for all three metrics.
	 Considering that a single 640 × 640 size image chip contained approximately 63 individual 
plants, our findings mentioned in the previous paragraph can be summarized as follows: (1) 
detection accuracy improved with an increase in the amount of training data in both Plots A and 
B; (2) in Plot A, 95% of a total of 21277 plants were detected using training data from 
approximately 630 plants selected to represent the individual differences in growth; and (3) in 

Fig. 6.	 Impact of different image chip cropping methods and annotation quantities on detection accuracy. Image 
chip size was fixed at an optimum of 640 × 640 pixels in both Plots A and B. Annotation size was set optimally at 5 
cm for Plot A and 10 cm for Plot B. The dashed lines indicate the practical detection performance level of 0.95, as 
defined in this study. 
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Plot B, 98% of all 7836 plants were detected using training data from approximately 126 plants 
selected randomly. These results can help find the optimal balance between the cost of creating 
training data and the desired accuracy level of object detection in precision crop management, 
especially for broccoli production. 

4.	 Conclusions

	 We developed a practical approach to locate individual open-field broccoli plants with a 
position error of less than 5 cm, using the georeferenced high-resolution orthomosaic imagery 
generated through UAV-based photogrammetry and the YOLOv5 object detection model. The 
feasibility of our method was evaluated on the basis of two angles: the cost of preparing training 
data and the accuracy of object detection. The orthomosaic imagery with a spatial resolution of 
approximately 7 mm was generated for two broccoli test plots: Plot A, which experienced large 
variations in plant growth due to drought-induced mortality and replanting, and Plot B, which 
showed small variations under normal growing conditions. 
	 To determine the optimal balance between the cost of generating training data and the desired 
accuracy level of object detection, we assessed the impact of four factors on object detection 
accuracy: (1) the size of the image chips used for annotation when cropped from the orthomosaic 
imagery; (2) the method used to crop the image chips from the orthomosaic imagery; (3) the size 
of the annotations surrounding individual plants captured in an image chip; and (4) the total 
number of annotations. The recommended settings for each factor are as follows: (1) the size of 
the image chips used for annotation should be 640 × 640 pixels; (2) stratified cropping should be 
used for the plot with large growth variation, while random cropping should be used for the plot 
with small growth variation; and (3) the size of the annotations should match the size of the 
individual plants to be detected.
	 On the basis of the results of analysis under the recommended settings for the first three 
factors, we found the following regarding the fourth factor: (1) detection accuracy improved with 
an increase in the amount of training data in both Plots A and B; (2) in Plot A, training data for 
approximately 630 plants selected to represent the individual differences in growth led to the 
detection of 95% of the total 21277 plants; and (3) in Plot B, training data for approximately 126 
plants selected randomly led to the detection of 98% of all 7836 plants. These results suggest that 
our approach for locating individual open-field broccoli plants is practical in terms of the cost of 
preparing training data and detection accuracy.
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