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 Recent developments in data collection technology and sensor precision have led to the 
generation of large amounts of high-quality data. The vast vessel trajectory data obtained from 
precise automatic identification system data facilitate the development of marine-related 
research fields. In particular, vessel trajectory prediction, such as preventing risks in advance or 
providing efficient routes by predicting the vessel location, is one of the essential parts of 
advanced vessel traffic service. In this study, the vessel trajectory was accurately and robustly 
predicted using a novel loss function. In previous studies, the loss function was designed to 
minimize the distance between the destination and predicted location of vessels, whereas the 
proposed loss function was designed to minimize the area of the triangle formed by the origin, 
destination, and predicted location. In experiments, the proposed approach outperformed the 
state-of-the-art method, reducing the mean absolute error by 12%.

1. Introduction

 Technologies for the efficient and safe management of marine resources and shipping 
networks have long attracted attention worldwide. In particular, various vessel traffic services 
(VTSs) that provide navigational traffic information, such as ship operation status or vessel 
traffic control to prevent maritime accidents from departure from the route, approach to a 
dangerous area, and risk of collision, have been proposed with the rapid growth of high-quality 
data owing to improvements in the data collection technology and sensor accuracy in the marine 
field. For instance, maintaining an efficient vessel traffic network through advanced VTSs can 
significantly contribute to economic development. In addition, it can provide economic and 
environmental benefits by reducing unnecessary fuel consumption through route optimization. 
It can also prevent catastrophic losses, such as oil spills and casualties, by detecting risks such as 
collisions between ships and between ships and marine structures in advance. Therefore, studies 
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related to abnormal behavior detection and vessel traffic prediction have been performed to 
achieve a safer and more efficient maritime traffic network.(1–3)

 The automatic identification system (AIS) data collected by navigation equipment that can 
automatically transmit and receive information such as ship identification or location contribute 
significantly to the development of advanced VTSs.(4–6) However, extracting meaningful 
features from extensive data to produce the desired results is challenging. Moreover, the data 
collected in the real world include various errors and outliers, which can degrade the performance 
of the defined model. For example, the non-normal distribution of data can distort the view of 
the data, leading to the poor performance of traditional statistical methods. In addition, if the 
data are nonlinear, it is challenging to perform predictive tasks with models that cannot handle 
nonlinearity because conventional methods assume linearity and have a simple structure.  
 Deep learning models alleviate these problems and have recently achieved good performance 
in several fields.(7,8) Thus, deep-learning-based models have been actively investigated for vessel 
trajectory prediction since 2018.(9)  In this study, among the various deep learning methods, long 
short-term memory (LSTM) was used for vessel trajectory prediction. LSTM performs well in 
trajectory prediction and is one of the most widely used deep learning methods. Moreover, many 
studies have been performed on the extension of LSTM.
 However, in previous studies, a loss function that minimized the distance between the 
destination (target) and the predicted location (output point) was used to train the deep learning 
model. Such a loss function has difficulty dealing with various elements. Therefore, in this 
paper, we present a novel loss function to minimize the area of the origin, destination, and 
predicted location. The performance of the proposed method was compared with that of the 
state-of-the-art method.
 The remainder of this paper is organized as follows. In Related Works, we review previous 
studies on vessel trajectory prediction to confirm the necessity and contribution of the present 
study. In Materials and Methods, we detail the AIS data and LSTM models used in the 
experiments, as well as the loss function, and present the metrics used for model evaluation. In 
Results, the proposed loss function is compared with the conventional loss function, and the 
performance improvement is verified. The results and contributions of this study are summarized 
in Discussion and Conclusions. Additionally, the limitations of the study and directions for 
future research are discussed.

2. Related Works

 The methods used for vessel trajectory prediction can be largely divided into statistical, 
machine learning, and deep learning methods. The statistical methods [i.e., autoregressive 
integrated moving average (ARIMA), Gaussian processes, and Markov chain] have been applied 
to tasks such as vessel trajectory prediction.(10–12) Such statistical methods have the advantages 
of simple formulas and easy calculations, but have various limitations. For example, ARIMA 
has an assumption of stationarity; however, the data collected, along with the data distribution 
required by the parametric approach, typically fail to satisfy this assumption.
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 In the case of the Kalman filter,(13) it is assumed that the error in the data follows a normal 
distribution, and that the current and previous states have a linear relationship. Furthermore, 
these models are inadequate for large amounts of data.(14)

 The amount of research on the use of deep learning for vessel trajectory prediction is 
increasing. With the development of sensors, deep learning methods that can make predictions 
on the basis of data have attracted considerable attention. Furthermore, deep learning, which 
builds layers for nonlinearity, outperforms other methods in many practical applications. It is 
suitable for application to real-world data because it does not assume the distribution of the data. 
 Among the deep learning models used for vessel traffic prediction, the artificial natural 
network (ANN) is the simplest. This algorithm trains the model using backpropagation, inspired 
by the central nervous systems of animals—particularly the brain. ANNs have been applied to 
vessel trajectory prediction.(15) However, because of the simple structures of ANNs, they have 
limitations for considering spatial and temporal features that can affect the vessel trajectory. 
Researchers have proposed various deep learning models to address these limitations.
 Graph convolutional networks (GCNs) are widely used for trajectory prediction.(16–18) They 
can reflect non-Euclidean information, such as relationships. However, they cannot capture 
time-series characteristics. Thus, the spatiotemporal graph convolutional network has been used 
for vessel trajectory prediction, which combines information from various graph-based 
models.(19)

 The recurrent neural network (RNN) is suitable for handling time-series data, and its 
variations have become the most widely used prediction methods. In particular, LSTM is widely 
used to alleviate the vanishing gradient problem of traditional RNN-based models, and it is used 
in trajectory prediction with various extensions.(20–22)

 While the aforementioned studies focused on deep learning models, in another study,(23) a 
new loss function was developed to improve the model performance. The existing loss function 
minimizes the Euclidean distance between the target and output points generated by the model.
 In addition to the distance between the target and output points, the loss function of the study 
considers the angle among the target, origin (input), and output points. Similarly, in this study, 
the area of the target, origin (input), and output points were considered in the loss function to 
train and improve the model. The LSTM model was used for vessel trajectory prediction. LSTM 
has been widely applied in various fields.(24–27) Moreover, the study of the previous loss function 
used LSTM for prediction. Therefore, the proposed loss function was applied to the LSTM 
model to improve the performance and perform the comparison in the present study. 

3. Materials and Methods

3.1 Data

 In this study, AIS data from navigation equipment were used. The data were collected from 
January 1 to December 31, 2020, and came from approximately 28000 ships that sailed around 
South Korea, including cargo, tanker, medical, fishing, and cruise ships. Figure 1 shows a 
sample of the data.
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 In this study, 100 of the approximately 28000 ships were randomly extracted. Then, we 
defined models and conducted the prediction when the sequence length of the trajectory was 
≥500	because	a	small	sequence	length	cannot	be	used	to	train	models.	Thus,	models	for	53	of	the	
100 vessels were defined.

3.2 Long short-term memory

 In this study, the LSTM model was used to predict the vessel trajectory. Figure 2 shows the 
structure of LSTM.(28) LSTM was proposed to alleviate the vanishing gradient problem of 
existing RNNs. It updates the cell state using three gates, namely, forget, input, and output, 
which employ the following formulas:

 [ ]( )1,  ,t f t t ff W h x bσ −= ⋅ +  (1)

 [ ]( )1, ,t i t t ii W h x bσ −= ⋅ +  (2)

 [ ]( )1,  .t o t t oo W h x bσ −= +  (3)

Here, f, i, and o represent the forget, input, and output gates, respectively. The hidden state is 
expressed as ht = ot * tanh(Ct), and σ represents a sigmoid activation function. LSTM manages 
the cell state by opening and closing the three gates described by Eqs. (1)–(3), which can 
alleviate the vanishing gradient problem. In LSTM, the cell state is defined as

Fig. 1. (Color online) Visualization of AIS data.
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  [ ]( )1tanh ,  ,t C t t CC W h x b−= ⋅ +  (4)

 

1 .t t t t tC f C i C−= ∗ + ∗  (5)

3.3 Loss function

 The loss function is a crucial component of deep learning. It calculates the model’s output on 
the basis of the weights and activation function, takes in actual data as input, and measures the 
difference between the model’s output and the desired targets. The loss function is used to 
optimize the weights until it can accurately predict the target variable. In regression problems, 
the goal is to predict a continuous output variable on the basis of one or more input variables. 
 The most common loss function for regression is the mean squared error (MSE), which 
measures the average squared difference between the predicted and actual values. Another 
popular loss function for regression is the mean absolute error (MAE), which measures the 
average absolute difference between the predicted and actual values. Both loss functions are 
used to optimize the parameters of a regression model during training. The goal is to minimize 
the loss function by adjusting the model’s weights and biases until the predicted values are as 
close as possible to the actual values.
 We developed a loss function considering a two-dimensional area to improve the performance 
of the deep learning model for trajectory prediction and compared it with a loss function 
considering distance and direction.
 Figure 3 shows the input (A), ground truth (B), and output (C) points. Let 

( ) ( )2 2,   u v u v u v
n n n n nx x y y∆ = − + − , with { }, , ,u v A B C∈ . The loss function that was most commonly 

used in previous studies, which only considers the Euclidean distance between the output and 
ground truth, is 

 ,
1 1

1 ,N B C
nnloss

N =
= ∆∑  (6)

Fig. 2. (Color online) LSTM architecture.



3398 Sensors and Materials, Vol. 35, No. 9 (2023)

where N represents the number of vessel trajectories. In one study, Eqs. (7) and (8) were 
added.(23) Equation (7) is a loss function for learning how far output data should be from input 
data. This is independent of direction but is an important factor to consider for accuracy.

 ( )2, ,
2 1

1  N A B A C
n nnloss

N =
= ∆ − ∆∑  (7)

 
2

, , ,

3 1 , ,

 1 arccos
2

A B A C B C
N n n n
n A B A C

n n

loss
N =

 ∆ + ∆ − ∆ =
 × ∆ × ∆ 

∑  (8)

Equation (8) is the second law of cosines. This is a loss function for ensuring the convergence of 
the angle BAC to zero. The proposed loss function, which aims at the convergence of an area of 
three points to zero, is given as

 ( )2, ,
4 1 ,1 1 sin

2
N A B A C

n nnloss
N

α
=

= ∆ ∆∑  (9)

where α represents the angle of the triangle formed by the three points. In our experiment, the 
model was defined, and statistical tests were performed to compare the performance of the 
proposed loss function with that of the previous loss function for vessel trajectory prediction. 
The previous and proposed loss functions are given by Eqs. (10) and (11), respectively.

 1 2 3  previous loss function loss loss loss= + +  (10)

 1 4  proposed loss function loss loss= +  (11)

Fig.	3.	 (Color	online)	Relationships	between	the	different	points	and	the	loss	function.
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3.4 Evaluations

 MAE and R2 were used to evaluate the model performance. MAE is a statistical measure of 
errors between two observations reflecting the same phenomena. R2 is a statistical measure that 
quantifies the proportion of the variance explained by an independent variable in a regression 
model for a dependent variable. They are defined as

 1 ,   n
i iiMAE y x

=
= −∑  (12)

 
( )
( )

2
2 1

1

1 ,
 

n
i ii

n
i ii

x y
R

x y
=

=

−
= −

−

∑
∑

 (13)

where i represents the number of samples in the test set of each model, x represents the model 
output, and y represents the ground truth. In addition, the percent difference was used to 
quantify differences between models. It is defined as 

 ( )
1 2

1 2
 100,

 
 

2

V V
percent difference

V V

−
= ×

 +

 

 (14)

where V1 and V2 represent the performance characteristics of two models given by metrics such 
as MAE and R2.

4. Results

 In our experiment, the predictive performance characteristics of the two models with different 
loss functions were compared and analyzed, and the results are shown in Table 1. The 
performance characteristics were evaluated by defining a model for the 53 vessels considering 
only the sequence length of 500.
 As indicated by the average values of MAE and R2, the proposed loss function can make 
vessel trajectory prediction more accurate and robust. The proposed loss function outperformed 
the previous loss function. A comparison of the percent differences revealed 12.77 and 0.47% for 
MAE and R2, respectively.
 In addition, a statistical test was conducted on the MAE and R2 values of the models to 
determine whether the differences in the results were statistically significant. Table 2 presents 
the statistical test results and the percent difference of means. A t-test is used to determine 
whether the difference between two groups is significant. If the p-value is less than the 
significance level (0.05), the difference between two groups is significant. Although there was 
no significant difference in MAE, the t-test confirmed that the difference in R2 was statistically 
significant.
 Moreover, Fig. 4 shows the predicted output and actual data for a single vessel from samples 
on a map. By comparing the proposed loss function with the previous one, it is apparent that it 
produces more accurate results closer to the actual data upon visual inspection.
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Table 1 
Results of experiments.
Index Previous loss function Proposed loss function

MAE R2 MAE R2

1 0.001244 0.951050 0.001280 0.943543
2 0.019567 0.914244 0.019732 0.919088
3 0.003186 0.980985 0.003415 0.976383
4 0.055157 0.911978 0.033388 0.960052
5 0.014349 0.984916 0.007315 0.994115
6 0.010199 0.972401 0.010004 0.973072
7 0.020175 0.965403 0.020202 0.965309
8 0.003466 0.993068 0.005561 0.992492
9 0.051834 0.934257 0.024249 0.982669

10 0.019963 0.973741 0.018725 0.974467
11 0.022571 0.983869 0.023633 0.982141
12 0.014127 0.995563 0.013370 0.995872
13 0.020456 0.983519 0.005554 0.997512
14 0.016167 0.955367 0.016191 0.955648
15 0.025620 0.967005 0.027027 0.968692
16 0.010083 0.949495 0.010259 0.946190
17 0.015925 0.953033 0.015890 0.953203
18 0.005253 0.999645 0.005415 0.999580
19 0.010843 0.960419 0.010465 0.962004
20 0.004554 0.971441 0.005014 0.982240
21 0.014003 0.995448 0.012081 0.995893
22 0.004097 0.999205 0.004058 0.999073
23 0.005223 0.999325 0.004808 0.999493
24 0.003075 0.999037 0.003758 0.998703
25 0.003667 0.999128 0.004647 0.998087
26 0.004975 0.996965 0.005239 0.995768
27 0.008698 0.996758 0.011073 0.986425
28 0.004574 0.998053 0.003759 0.999113
29 0.018938 0.975151 0.010644 0.991719
30 0.003287 0.992411 0.002445 0.989021
31 0.007573 0.990580 0.004943 0.997188
32 0.007964 0.994868 0.010396 0.992768
33 0.003961 0.999214 0.009965 0.996824
34 0.005829 0.993450 0.006562 0.991846
35 0.003082 0.916095 0.002775 0.985271
36 0.002644 0.999494 0.002513 0.999485
37 0.003947 0.999058 0.003491 0.999417
38 0.003350 0.996702 0.005404 0.995429
39 0.003564 0.999029 0.003730 0.999115
40 0.017444 0.926482 0.005390 0.994930
41 0.004814 0.951732 0.004678 0.953642
42 0.003197 0.964527 0.004693 0.962380
43 0.001317 0.998357 0.001306 0.997741
44 0.016294 0.963319 0.015696 0.963353
45 0.017246 0.979846 0.017802 0.978491
46 0.004687 0.993855 0.005205 0.995701
47 0.006334 0.999332 0.005827 0.999408
48 0.012632 0.939559 0.015013 0.927763
49 0.004422 0.999572 0.005611 0.999205
50 0.009195 0.938940 0.008395 0.937297
51 0.006486 0.998554 0.011774 0.996258
52 0.016661 0.993514 0.016167 0.993224
53 0.004665 0.999581 0.005725 0.999477
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6. Discussion and Conclusions

 In this paper, we presented a new loss function for vessel trajectory prediction based on AIS 
data. The proposed loss function improves the model performance by considering both the 
Euclidean distance and the area. The proposed loss function outperformed a previously reported 
loss function in our experiments. In particular, the t-test confirmed that the difference in R2 was 
statistically significant. Furthermore, the percent difference in means revealed that the proposed 
loss function performed better than the alternative loss function. The MAE and R2 values 
differed by approximately 12.07 and 0.47%, respectively.
 In training a deep learning model, the loss function measures the difference between outputs 
and targets. Furthermore, the training process updates the parameters through backpropagation 
on the error calculated using a loss function. Thus, the loss function is one of the vital factors of 
the deep learning structure. In previous studies, the loss function that minimizes the Euclidean 
distance for vessel trajectory prediction was widely used. However, it is necessary to develop 
alternative loss functions to improve the performance of the deep learning models. The results of 
this study can contribute to the optimization of VTSs.

Table 2 
Statistical results.
Metrics MAE R2

Percent	difference	of	means 12.77% 0.47%
t-test p-value > 0.05 p-value < 0.05

Fig. 4. (Color online) Visualization of prediction results.
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 However, we did not apply the multiple data previously used, such as relationships or 
correlation. Moreover, we used the data generated by 53 ships by defining a model only when 
the sequence length was above a certain level among randomly extracted samples. Future studies 
should focus on model generalization by considering vessels’ size and weather.
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