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 Three-phase unbalance refers to the inconsistency of three-phase current or voltage amplitude 
in a power system, which is a leading cause of power quality degradation, increased line loss 
rates, and transformer failures in distribution network systems. In this study, we propose a set of 
early warning methods for detecting three-phase unbalance states using data fusion from current 
sensors, current balance rate state analysis, and timing prediction. The proposed method utilizes 
the data collected from current sensors in a smart metering system to establish timing data for 
current unbalance rates through the calculation of unbalance degree and the coding of unbalance 
states. The parameters of a backpropagation (BP) neural network are optimized using a genetic 
algorithm (GA) to improve prediction accuracy by determining optimal values for neuron 
weights and thresholds during network training. Finally, a current balance state timing prediction 
model based on the GA-BP algorithm is established and validated using the collected data to 
verify its accuracy and feasibility. While the overall early warning system may require more 
precise current sensors to provide stable and accurate electrical energy data for prediction, the 
proposed method can achieve a balanced situational awareness of the three-phase power system 
and provide an effective decision-making basis for deep security defense, and take the necessary 
measures in a timely manner to respond to the problems encountered in the power system.

1. Introduction

 With the rapid economic development in various regions, the demand for electrical energy 
has significantly increased, especially in low-voltage residential areas where a three-phase four-
wire distribution network system is commonly used.(1) Power transformers play a critical role in 
the power transmission system, and their failure can result in direct and indirect losses to power 
users, as well as negatively impact the overall stability of the power system.(2,3) In a three-phase 
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four-wire distribution system, maintaining a balanced state can be challenging,(4,5) as it involves 
various factors such as unbalanced transformer capacity, different winding distributions, 
improper coil connection, and leakage between transformer windings. Severe unbalance in the 
line system can lead to a significant decline in power quality, increased line losses, reduced 
power conversion efficiency, and even transformer failure.(6)

 Currently, there has been significant research focus on the balance control of three-phase 
four-wire circuits. Zheng conducted a study on mechanical equipment fault prediction using 
multidimensional timing data, such as current.(7) Cui et al. proposed a timing prediction method 
based on discrete Fourier decomposition for power imbalance prediction,(8) while Weng et al. 
studied power quality prediction on the basis of clustered long short-term memory neural 
network deep learning.(9) However, most studies(10–13) have focused on analyzing technical 
methods for current balance compensation in three-phase four-wire transformers, and while 
these compensation technologies have become more mature, they often suffer from the 
limitations of aging control equipment, resulting in temporary and less effective power balance. 
Moreover, there is still a lack of research on prediction methods for power-quality-related 
indicators and the timely detection of transformer line problems for targeted measures.
 Therefore, in this study, we first propose a neural-network-based transformer current balance 
timing prediction model. Furthermore, we optimize the parameters of the neural network using a 
genetic algorithm (GA) to improve the prediction accuracy of the model. Finally, we validate the 
prediction performance of the proposed model using the actual data collected from current 
sensors in a smart meter metering system with multiple transformer current timing datasets. 
Through error analysis and comparison with a pure backpropagation (BP) neural network model, 
we demonstrate the improved prediction accuracy of our proposed model.

2. Current Balance Prediction Model Based on the Genetic Algorithm and BP 
Neural Network Algorithm

2.1 Introduction of three-phase four-wire transformer

 The time series data of current imbalance rate is further obtained on the basis of the current 
data recorded by a smart meter metering system for a typical station of a three-phase four-wire 
transformer in a regional power grid collected and collated by the system, which can be regarded 
as an input–output system determined by a nonlinear relationship, and the time series prediction, 
which is specifically a process of fitting nonlinear parameters. The schematic diagram of the 
line system of a three-phase four-wire transformer is shown in Fig. 1. 

2.2 Introduction to BP neural network

 The BP neural network is a powerful tool for effectively classifying or predicting various 
parameter-free nonlinear data sets.(14) It is a multilayer feed-forward neural network that 
processes input signals layer by layer in a forward propagation process. When the output values 
of the output layer are not within the specified range, the network is adjusted through backward 
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propagation, optimizing the weights of neurons on the basis of the prediction error and threshold  
to minimize the output error. The topology of the BP neural network is illustrated in Fig. 2, and 
the main data and parameters involved include input values, output values, neural network 
weights, and thresholds, as well as the numbers of input and output nodes. 

2.3 BP neural network time series forecasting model

 During the network training process for current balance timing data, where the input values 
consist of multiple feature variables and the output values consist of a single variable representing 
the predicted current balance rate at the next time point, the forward propagation in the output 
layer can be expressed as

 kj j ji ki j
i

F w vα α
 

= +  
 
∑ , (1)

Fig. 1. (Color online) Three-phase four-wire transformer line schematic.
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where Fj is the j-th sigmoid-type activation function, wji represents the weight of the i-th neuron 
in the previous layer on neuron j in the current layer, αkj/αki is the information output of sample k 
in neuron i in the previous layer or neuron j in the current layer, and vj is the threshold of neuron 
j in the current layer.
 In the forward propagation process, if the output result cannot meet the accuracy, the network 
will perform layer-by-layer backward transmission error rate. Starting from the output layer, the 
training error can be expressed as

 (1 )( )kj kj kj kj kjε α α λ α= − − . (2)

 Upon entering the hidden layer, the training error is updated as

 (1 )kj kj kj kg gj
g

wε α α ε= − ∑ . (3)

 The weights are then corrected on the basis of the training error using

 ( 1) ( ) [ ( ) ( 1)]ji ji kj kj ji jiw w w wλ λ σε α φ λ λ+ = + + − − . (4)

 Similarly, the threshold is updated using 

 ( 1) ( ) [ ( ) ( 1)]j i j j jv v v vλ λ σε φ λ λ+ = + + − − , (5)

where ϕ is a potential factor that helps to reduce the oscillations during network training by 
affecting the change in past weight with respect to the threshold and σ is the learning rate, which 

Fig. 2. (Color online) BP neural network topology diagram.
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represents the step size of the gradient search. The learning rate can be set higher when the 
network does not oscillate during training in order to expedite the training process.
 On the basis of the aforementioned network training model, the neural network architecture 
is employed to learn the diverse sequence patterns inherent in the time series data of current 
balance rates through nonlinear fitting. This is achieved by utilizing reliable training samples of 
time series data and effectively storing the information in the network to enhance its pattern 
discrimination capability. In other words, the network leverages its memory of sequence 
development patterns to predict the future behavior of the time series.

2.4 Neural network optimization based on GA improvement

 Considering the high dependence of the BP neural network on gradient information from 
training data, in this study, we aim to minimize the global error and achieve the global optimal 
solution of weights and thresholds in the network by using a GA to improve the BP neural 
network model.(15) The GA is employed for population-based search to determine the optimal 
neuron weights and thresholds during the network training process.
 To implement this approach, the weights and thresholds are encoded as a set of ordered 
chromosomes, where each chromosome represents a candidate solution for the network’s weights 
and thresholds. The number of training objects in the chromosomes is represented by real 
variables in the corresponding dimension, which are part of the encoding operation.

 [ ]11 12 1 2 1 2, , , , , , , ,mn m mA w w w v v v λ λ λ=     (6)

 During the evolutionary process of the GA, the chromosomes are evaluated using a fitness 
function, which plays a crucial role as the basis for the selection operation. In this study, the 
fitness function is calculated on the basis of the weights and thresholds of individual neurons in 
the BP neural network.

 2

1 1

1( ) ( )
2

t r
i i

i kj kj
k j

E A
t

β α
= =

= −∑∑  (7)

 1( ) ( )i iF A E A−=  (8)

 In the above equation, the variable i
kjβ  represents the desired output value and i

kjα  denotes the 
output value of the i-th chromosome object, which is determined by the weights and thresholds, 
for the k-th training object located at node j. The total number of training objects is denoted by t, 
while r represents the number of neurons in the output layer of the BP neural network. The 
genetic population size is denoted by Nr. On the basis of these variables, the fitness or adaptation 
degree F(Ai) of the i-th chromosome can be calculated.
 The evolutionary process of the GA includes the following.
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2.4.1 Gene selection

 On the basis of the adaptation value of an object in the population, the probability of the 
parent object being included in the offspring is determined using the roulette wheel selection 
method, which involves proportional selection based on the adaptation value in descending 
order. Specifically, the higher the adaptation value of an object, the greater its probability of 
being selected, and vice versa. Mathematically, the probability Ps of an object being selected can 
be expressed as

 

1

( )

( )
r

i
s N

i
i

F AP
F A

=

=

∑
. (9)

2.4.2 Gene crossover

 On the basis of the crossover operator, the coding structure of the good object is selected 
from the global optimal perspective. In the following equation, the crossover operation is 
performed on gene strands Ai and Aj, which have chromosomes ia  and ja  corresponding to a 
position on the gene strand, and two intermediate variables are set as
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where maxa  and mina  are the upper and lower bounds of the ia  and ja  values, respectively. The 
crossover probability cP  is calculated as
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Here, k1 and k2 are constants in the range [0, 1]; Fmax, Favg, and Fb denote the population 
maximum fitness, the population average fitness, and the strand with the higher fitness among 
the crossover pairs, respectively. On the basis of the crossover probability Pc and the random 
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number φ in the range of [0, 1], some chromosomes of the selected strand are crossed over to 
obtain two new offspring individuals:

 1 11 1
2 2

c c
i i j

P Ps + −
= ∆ + ∆ , (13)

 (1 )j i js a aϕ ϕ= + − . (14)

 This crossover operation enables the child object to perform a new domain search in the 
region where the parent object is located toward the individual parent object with high 
adaptation, which improves the efficiency of training and ensures the expansiveness of the 
genetic population search space.

2.4.3 Genetic variation

 The mutation behavior of genes in the GA involves replacing the original gene values with 
uniformly distributed random numbers, allowing the search process to explore the search space 
freely and generate new variants of the parent object. The new gene values are calculated using 
the following formula:

 ( )min max minkA A A Aρ= + ⋅ − , (15)

where Amax and Amin represent the maximum and minimum values of the target variables of the 
initial object, respectively. ρ  is a random number uniformly distributed in the range [0,1] . This 
mutation behavior continuously optimizes the coding structure by searching for cues in the 
space, enhancing the capability to find local optimal solutions and maintaining the diversity of 
the genetic population.

2.5 GA-BP neural network prediction

 In conclusion, the current balance prediction model proposed in this study consists of three 
main components: BP neural network structure determination, GA optimization, and BP neural 
network prediction. The flow of the genetic-algorithm-optimized BP neural network algorithm 
is illustrated in Fig. 3.
 When solving the actual GA-BP model, the key step is to determine the appropriate neural 
network structure, including the number of nodes in the input layer, n, the number of nodes in 
the output layer, m, and the number of nodes in the hidden layer, S, where the number of hidden 
layers is generally determined using the empirical formula: , ( 1, 2, ,10)S n m a a= + + =  , 

2 1S m= + , or S nm= . To achieve the best prediction performance, parameters are selected by 
repeatedly evaluating the training error for different parameter combinations using different 
prediction datasets.
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 The optimization process using the GA involves constructing a gene chain based on weights 
and thresholds and setting the population size, crossover probability, and other GA parameters. 
During the iteration, the optimal fitness individuals are decoded to provide the optimal weights 
and thresholds for network training.
 
3. Current Balance Timing Prediction Based on GA-BP Model

3.1 Timing data preprocessing

 The three-phase current unbalance is generally measured using two calculation formulas,(16) 
namely,

 max min

max
I

I I
I

µ
−

= , (16)

and

 
{ }/ /max A B C avg

I
avg

I I

I
µ

−
= . (17)

Fig. 3. Improved GA-BP algorithm flow chart.
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 Here, IA, IB, and IC represent the A, B, and C phase currents, and Imax and Imin represent the 
current three-phase maximum and current three-phase average, respectively. The first current 
unbalance rate calculation method, which is more commonly used locally, is chosen in this 
study.
 To provide a more intuitive representation of the current imbalance degree and evaluate the 
accuracy of the time series prediction results, a current imbalance code was utilized in this 
study. The degree of current imbalance was graded on the basis of specific ranges, as presented 
in Table 1.
 In this study, current data from transformers in three representative low-voltage residential 
customer stations within a regional power grid were collected and compiled over a period of 50 
days. The data were recorded in meters at 15 min intervals, and the current imbalance rate was 
calculated in advance, with the current imbalance degree code assigned according to local rules. 
However, owing to equipment limitations, there were some missing values in the collected 
current data. Nevertheless, the impact of these missing values on the prediction results was 
found to be insignificant after thorough testing and analysis.

3.2 Main parameter setting of GA-BP algorithm

 In this study, the established dataset is normalized and used as training samples for the neural 
network, with every 15 data collection points used for training and the prediction target being 
the current imbalance rate of the next data collection point. The neural network structure is set 
with 15 input nodes and one output node, and the time window is continuously shifted to 
complete the prediction of the entire time series. On the basis of the empirical formula of about 
five hidden layers, the number of hidden layers is experimented several times, and it was found 
that the best result is obtained with eight hidden layers.
 The specific functions of each parameter of the GA were obtained from the literature.(17) 
Similarly, several experiments were conducted to select the optimal values for the parameters of 
the GA, such as the number of genetic generations and the population size.
 The population size is typically set between 10 and 200, with larger population sizes resulting 
in longer computation times and less notable improvement in optimization. Through 
experimental verification, a population size of 50 is found to yield the best results. The crossover 
and mutation probabilities are set at 0.8 and 0.1, respectively. The number of generations for 
genetic evolution is set at 50.

Table 1 
Current imbalance code table.
Qualification code 
of current balance

Range of current 
balance rate

Significance

1 0–25 Balance
2 25–50 General imbalance
3 50 Severe imbalance
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3.3 Analysis of model prediction results

 On the basis of the set GA-BP parameters, three sets of preprocessed transformer current 
balance timing data sets are input into the program and divided into training and test sets in the 
ratio of 8:2 to perform timing prediction, and the obtained prediction results and the variation 
curve of the fitness value are shown in Figs. 4 and 5, respectively.
 The prediction results of the test set were translated into current imbalance codes according 
to Table 1, and the prediction accuracies of the test set for the three sets of station data reached 
95.1, 97.8, and 97.2%. These high-accuracy predictions indicate that the prediction method 
closely approximates the actual variation of current imbalance rate. This prediction model is 
based on the current sensor module of the smart meter to collect data for the three-phase current 
to achieve the early warning of the current unbalance condition of the transformer, enabling the 
implementation of a series of compensation methods, such as current compensation by switching 
a power regulator,(18) model control based on combined switching states,(19) distributed selective 
harmonic mitigation, and decoupling unbalance compensation by coordinated inverters,(20) as 
mentioned in the literature. These compensation methods can be applied in a timely and targeted 
manner to control current balance, thereby reducing line losses and mitigating the risk of faults.

Fig. 4. (Color online) Network training adaptation curve for three station areas.
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3.4 Comparison of prediction errors with other network models

 To further evaluate the performance of the GA-optimized neural network model in predicting 
transformer current balance rate timing, additional comparison experiments were conducted 
using the BP and RBF neural network timing prediction model on the same dataset. These model 
were trained and tested on the current balance timing data, and their prediction errors were 
compared with those of the GA-optimized model.
 The RBF network utilizes radial basis functions as hidden units to create a high-dimensional 
space in the hidden layer. This transformation of the input vector allows for the linear separability 
of the data in the higher space, making it capable of handling nonlinear functions and capturing 
complex patterns within the system. The RBF network exhibits excellent generalization 
capability and fast learning convergence, making it suitable for nonlinear function approximation 
tasks. Table 2 shows the average error test and the prediction accuracy results for each of the 
three models for 10 training sessions.

Fig. 5. (Color online) Prediction results for the test set for three station areas.
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 After conducting multiple training sessions, the findings reveal that the GA-BP neural 
network outperforms both the pure BP network and the RBF network in terms of prediction 
accuracy and adaptability. Despite the longer training process associated with the GA-BP 
algorithm, its prediction results are characterized by higher confidence and greater stability.

4. Conclusions

 In this paper, a current balance timing prediction model based on the GA-BP neural network 
is proposed, which utilizes the population search of the GA to optimize the neuron weights and 
thresholds in the process of training the BP neural network, resulting in improved prediction 
accuracy. The model is applied to the real-world data collected from a smart meter metering 
system, which provides transformer current data for calculating the current imbalance degree 
and classifying the imbalance state through coding. After preprocessing, the current imbalance 
rate time series data is obtained, and several tests are conducted to determine the optimal neural 
network structure and GA parameters for the model. The performance of the optimized GA-BP 
model is compared with that of a pure BP model using practical transformer current timing data 
from three typical low-voltage residential customer stations. The results demonstrate that the 
optimized model yields better prediction results with lower errors, indicating its considerable 
feasibility in balance state prediction. However, note that the presence of missing values in real-
time metering data from smart meters may impact the prediction accuracy, potentially resulting 
in reduced prediction effectiveness for the balance state due to the missing values. Despite this 
limitation, the framework of the three-phase current balance state prediction proposed in this 
study can serve as a practical reference for fault prediction and line loss measurement in power 
systems. The use of a grid-based smart meter metering system, combined with balance 
compensation technology, has the potential to reduce transformer losses and fault incidence by 
accurately predicting the three-phase balance state.

Table 2
Training result error test table.
Algorithm Station area number R2 RMSE Code prediction accuracy (%)

GA-BP 1 0.32826 9.3917 96.5
2 0.28959 7.8944 97.2
3 0.36916 8.1352 96.9

BP 1 0.21969 10.0731 94.3
2 0.23734 8.9882 95.3
3 0.31201 8.7362 94.9

RBF 1 0.25139 9.8737 95.1
2 0.23166 8.6672 95.4
3 0.32245 8.5650 95.2
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