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	 Artificial intelligence, wireless communication, heterogeneous sensors, human–machine 
integration, and other emerging technologies provide effective technical support for the 
intelligent digital transformation of grid operation and maintenance modes. Exoskeleton devices 
can take on larger weight loads for the human body to improve operational efficiency, safety, and 
security for operation scenarios that require long time assistance, such as carrying and lifting in 
grid operation and maintenance. In this study, for the power-assisted optimization problem of a 
multisource sensor industrial exoskeleton device, a workspace optimization model of a four-
degree-of-freedom industrial upper limb exoskeleton is constructed on the basis of the principle 
of positive kinematics and the graphical solution method, and an improved tuna swarm 
optimization algorithm (ITSO) based on population hierarchy, elite backward learning, and 
genetic variation is proposed for the solution of the constructed model. The Tent chaos mapping 
mechanism is introduced to improve the population diversity on the basis of the traditional tuna 
algorithm, and the population hierarchy mechanism, elite backward learning, and genetic 
variation operator are introduced to further improve the global optimization capability of the 
algorithm. The designed algorithm is compared with the particle swarm algorithm, genetic 
algorithm, gray wolf algorithm, and other cutting-edge intelligent algorithms in cross-sectional 
simulation experiments, and the results show that the optimal search ability of ITSO is improved 
by 0.12, 0.16, 0.08, and 0.05% on average, respectively, compared with the other algorithms, 
which verify the feasibility of the model and the algorithm designed in this study for solving the 
exoskeleton power-assisted problem.

1.	 Introduction
	
	 Traditional power grid operation and maintenance involve long hours and a large number of 
repetitive and high-load operation scenarios, so the physical requirements of personnel are high. 
Moreover, maintenance operations have a high risk factor and require strong professionalism. 
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Because the professionalism and safety awareness of personnel vary, any operational oversight 
can easily lead to safety accidents. To solve these problems, intelligent robotics has become 
widely used in power grid operation and maintenance in recent years.(1) Industrial exoskeletons, 
as one of them, can help in the operation and maintenance personnel complete repetitive, 
tedious, and dangerous tasks through a booster system and human–machine interaction 
technology, reduce work intensity and risk, and improve work efficiency.
	 Many research teams have proposed different types of power-assisted models for industrial 
exoskeletons, which involve key technologies such as structural design,(2) power system 
design,(3) sensors,(4) and control system design.(5) In a previous study,(6) the camshaft acceleration 
and output torque accuracy of the upper limb exoskeleton cam mechanism were optimized on 
the basis of the radial basis function and NSGA-II. A new three-degree-of-freedom spherical 
mechanism was designed and applied to the exoskeleton shoulder design.(7) The control strategy 
of the exoskeleton knee joint plunger cylinder was also simulated and optimized to solve the 
problem of excessive jitter during squatting.(8)

	 Although the industrial exoskeleton power-assisted model has great application prospects in 
power grid operation and maintenance, the current industrial exoskeleton still has some 
problems and deficiencies such as an unstable power system, low control accuracy, and 
insufficient operational flexibility.(9) Therefore, in this study, we aim to improve the applicability 
and performance of the industrial exoskeleton power-assisted model in power grid operation and 
maintenance by optimizing the parameters and solving these problems and deficiencies.
	 Population intelligence optimization algorithms as bionic algorithms, such as genetic 
algorithm (GA),(10,11) simulated annealing algorithm,(12) and particle swarm algorithm (PSO),(13) 
have a wide range of industrial applications with their advantages of efficiency,(14) adaptability, 
robustness, flexibility, and scalability. In this study, we chose the tuna swarm optimization 
(TSO) algorithm, which has a better optimization seeking ability, to solve the established 
exoskeleton optimization model and introduce strategies such as population hierarchy and elite 
backward learning to further improve its solution performance.
	 According to the actual structural characteristics and performance constraints of the 
industrial operation and maintenance exoskeleton, we established an exoskeleton workspace 
optimization model on the basis of the principle of positive kinematics with the goal of improving 
the kinematic performance of the device and used the improved swarm intelligence algorithm to 
carry out simulation solutions to further optimize its structural parameters, so that it can be 
better applied to power strip operations and other power grid operation and maintenance tasks.

2.	 Operations and Maintenance Exoskeleton Power-assisted Model

2.1	 Upper limb operation and maintenance exoskeleton Denavit–Hartenberg model

	 The physical structure of the upper limb operation and maintenance exoskeleton device is 
shown in Fig. 1. The structure body of the device includes a four-axis tandem upper limb 
wearable robot with a shoulder fixation belt, a waist fixation belt, an elbow and upper back 
fixation belt soft package, and a power source as the electric power drive. The left and right 
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shoulder joints of the exoskeleton have independent absolute position sensors, touch force 
sensors, and other multisource sensors, and they also have a dual-feedback position sensor 
system, which can independently respond to the upward and downward positions of the left and 
right arms. The exoskeleton robot arm has two active degrees of freedom and two passive 
degrees of freedom, and both are rotational degrees of freedom.
	 In this study, the Denavit–Hartenberg (DH) method was used to model the linkage coordinate 
system of the O&M exoskeleton, i.e., the four parameters, namely, the linkage length a, linkage 
angle α, linkage deflection d, and joint angle θ, were used to determine the motion conversion 
relationship between the linkages of the mechanism.
	 The DH method establishes the coordinate system on the mechanism drive axis, and the joint 
at the end of the connecting rod is used as its solid coordinate system. Since the left and right 
arms of the exoskeleton device have the same structural layout, only the single arm was analyzed 
kinematically in this study. The DH coordinate system of the exoskeleton device was established 
as shown in Fig. 2, and its DH parameters are shown in Table 1.
	 According to the chain rule of coordinate system transformation, the transformation matrix 
from the i − 1st coordinate system to the i-th coordinate system can be written as

	
1 1 1

1 1 

       ( ) ( ) ( ) ( ),
i i i i

Qi i R P
i R Q iP

Z i Z i X i X i

T T T T T

Trans d Rot Trans a Rotθ α
− − −

− −=

=
	 (1)

Table 1
O&M upper limb exoskeleton DH parameters.
Joint i αi ai di θi
1 π/2 0 0 θ1
2 0 l2 h2 θ2
3 0 l3 0 θ3

Fig. 1.	 (Color online) Upper limb operation and maintenance exoskeleton physical diagram.

Fig. 2.	 (Color online) Operation and maintenance of the 
upper limb exoskeleton linkage coordinate system.
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where Rot denotes the corresponding rotation matrix and Trans denotes the translation matrix. 
Then, the flush transformation matrix between the adjacent coordinate systems of this 
exoskeleton device is

	

1 1 2 2 2 3 3 3

2 2 3 30 1 2
1 2 3

1 1 2

0 0 0 0
0 0 1 0 0 0 0 0

, ,
0 0 0 0 1 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 1

c s c s l c s l
s c s c

T T T
s c h

− − −     
     −     = = =
     
     
     

.	 (2)

	
	 The lengths of the connecting rods corresponding to h2, l2, and l3 are shown in Fig. 2. si 
denotes sinθi and ci denotes cosθi (i = 1, 2 ,3). The total chi-square transformation matrix of the 
exoskeleton is obtained by multiplying the chi-square transformation matrices of each linkage 
coordinate system together:

	

11 12 13

21 22 230 0 1 2
3 1 2 3

31 32 33

0 0 0 1

x

y

z

r r r p
r r r p

T T T T
r r r p

 
 
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 
  

,	 (3)

where P = (px, py, pz) is the position vector of the end-effector of the exoskeleton device. The 
joint solution yields

	

1 2 3 1 2 1 2

2

2 1 3 1 2 2 1

cos  + (cos cos sin sin ),

,

sin (cos sin cos sin ).

x

y

z

p l l

p h

p l l

θ θ θ θ θ

θ θ θ θ θ

= −

= −

= + +

	 (4)

	 The Robotics Toolbox for MATLAB 10.4 was used to build the visualization model of the 
O&M exoskeleton, thus verifying the correctness of its positive kinematic solution, in which the 
initial joint angle parameters θi (i = 1, 2 ,3) are set to 0, as shown in Fig. 3, which is consistent 
with the established linkage model and verifies the correctness of the constructed coordinate 
system.

2.2	 Exoskeleton workspace analysis

	 The spatial range that the workspace exoskeleton robot can control and operate includes the 
range that the robot can cover in three-dimensional space. From the above analysis, it can be 
seen that the workspace of this exoskeleton device is mainly affected by three parameters, h2, l2, 
and l3, as shown in Fig. 2.
	 The working space of the single arm of the O&M exoskeleton device was first solved using 
Matlab based on the Monte Carlo algorithm. The three parameters h2, l2, and l3 were given initial 
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values; the human body has a limited range of joint rotation angles, such that θ1 ∈ [0°, 90°], 
θ2 ∈ [−90°, 90°], and θ3 ∈ [0°, 180°]. Taking the random series N = 5000, the working space, 
coverage space, and projection map of this exoskeleton device were obtained as shown in 
Figs. 4–5.
	 First, the exoskeleton workspace coverage was geometrically abstracted using the graphical 
method to analyze its workspace projection on the XoY plane. As shown in Fig. 6, this projection 
area can be divided into three different parts, where the A2 area represents the overlapping area 
of the workspace of the two arms.
	 A geometric analysis of Fig. 6 yields the following relationships:

	 2 2
2 2 3( )R h l l= + + ,	 (5)

	 2 2
2 2r h l= + ,	 (6)

	 1 2

2
arctan l l

h
α +

= ,	 (7)

	 1 3 1 / sin
2

o c D γπ = − 
 

,	 (8)

	 2 2
2 3 1 1 tan

2
c c R D D γπ = − − ⋅ − 

 
,	 (9)

	
2 2 2

1 3 1 2 2 3

1 3 1 2
cos

2
o c o c c c

o c o c
β

+ −
=

⋅
,	 (10)

Fig. 3.	 (Color online) Visualization model of exoskeleton.
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	 arcsin r
R

γ = .	 (12)

	 To simplify the calculations, the necessary approximations were made for the calculation of 
the coverage of each region, and they are

	 ( ) 2
1 2 2 2

1 ( )
2

S A h l l r α = + −  ,	 (13)

	 ( ) ( )2 2
2

1
2

S A R rθ θ= − .	 (14)

Fig. 6.	 (Color online) Workspace projection surface analysis.

Fig. 4.	 (Color online) Main view of the workspace. Fig. 5.	 (Color online) Workspace projection.
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	 The projected area of the exoskeleton bipartite overlap region can be calculated as

	 2 2
1 2 3 1 1 1

1 tan
2 2

S o c c D R D D α
 π = − − −  

  


,	 (15)

	 1 1 2
1
2

S o c c Rβ= ,	 (16)

	 ( )3 1 1 2 1 2 32[ ]S A S o c c S o c c= −  .	 (17)

	 To optimize the workspace of the exoskeleton device, optimal solutions need to be sought for 
each rod length to maximize its range of boundary curves. In addition, the overlap of the 
working space range of both arms needs to be minimized when considering the nonessential 
working area. Therefore, we can define the effective workspace of the exoskeleton power-
assisted model as the following objective function:

	 1 1 2 2 3max [ ( ) ( )] ( ).S S A S A S Aω ω= + − 	 (18)

Here, ω1 and ω2 are the introduced linear weights that satisfy the relation ω1 + ω2 = 1.
	 Considering the actual structure and length ratio of each joint in the human body, the length 
of each linkage of the exoskeleton should be limited as 

	
2

2

3

0 200 ( )
0 400 (

0

mm
mm

(m4 m
)

0 0 )

h
l
l

≤ ≤
 ≤ ≤
 ≤ ≤

.	 (19)

	 Owing to the limited rotation angle of human upper limb joints, the joint rotation angle was 
limited to

	
1

2

3

[0 ,90 ]

[ 90 ,90 ]

[0 ,180 ]

θ

θ

θ

 ∈
 ∈ −


∈

 

 

 

.	 (20)

	 To reduce the burden on the wearer, the self-weight of each part of the system should be as 
small as possible, so the total length of each linkage should be limited to

	 2 2 30 800 ( )mmh l l≤ + + ≤ .	 (21)
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3.	 Tuna Swarm Optimization

	 The TSO algorithm is a new population intelligence optimization algorithm proposed by Xie 
et al. in 2021,(15) which finds the optimal solution of a problem by simulating the prey hunting 
behavior of a tuna swarm. 

3.1	 Spiral foraging

	 The tuna school surrounds and pursues prey fish in a spiral formation, while the tuna will 
exchange information with each other. At the beginning of the algorithm search, tuna individuals 
generate a random position in the search space as the reference point for their own spiral update, 
and as the number of iterations increases, the reference point gradually transitions from the 
random position to the optimal tuna individual, thus completing the transition of the algorithm 
from global search to local optimization search. The formula of individual i position update 
based on the spiral foraging strategy is shown in Eq. (22).
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	 1 (1 ) ta a
T

α = + − ⋅ 	 (23)

	 2 (1 ) (1 ) ta a
T

α = − − − ⋅ 	 (24)

	 cos(2 )b le bβ ⋅= ⋅ π 	 (25)

	 exp(3cos{[(( 1) / ) 1] })l T t= + − π 	 (26)

Here, t is the current number of iterations, T is the maximum number of iterations, α1 and α2 are 
the weight coefficients of individual movement trends, a is a constant indicating the degree of 
following in the initial phase, and b is a random number between 0 and 1.

3.2	 Parabolic foraging

	 In addition to spiral foraging, tuna schools also have a parabolic foraging strategy, and both 
foraging methods have the same probability of selection. Cooperative foraging in a parabolic 
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formation is achieved when the tuna adopt a parabolic formation with the prey fish as a reference 
and also search for prey in the surrounding area. The equation for updating the position of 
individual i based on the parabolic foraging strategy is shown in Eq. (27).
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t
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T
 = − 
 

.	 (28)

Here, r is a random number with the value of −1 or 1.

4.	 Improved Tuna Optimization Algorithm Based on Population Hierarchy 
Strategy, Elite Opposition-based Learning, and Genetic Variation

	 In the traditional tuna optimization algorithm, the initial population is generated by random 
initialization, and the position update of tuna individual i is affected by the global optimal 
solution and individual i + 1, and the global search ability of the algorithm will be weakened 
with the increase in the number of iterations, which leads to the problems of the uneven 
distribution of the initial population, the weak global search ability of the algorithm, and easy to 
fall into the local optimum. To address these problems, we introduced Tent chaos mapping, 
population hierarchy, elite opposition-based learning, and a genetic variation operator to improve 
the algorithm in order to increase the initial population diversity, enhance the global search 
ability of the algorithm, and enable it to quickly jump out of the local optimum.

4.1	 Tent chaos mapping

	 The traditional tuna algorithm uses random initialization in the search range to generate the 
initial population, which easily leads to low individual diversity and is prone to fall into local 
optimum in the iterative optimization process. In this study, the population is initialized on the 
basis of the Tent chaos mapping mechanism to expand the population diversity in order to obtain 
high-quality initial feasible solutions.(16) The population initialization based on Tent chaos 
mapping is defined as

	 1
/ , [0, ]

(1 ) / (1 ). [ ,1].i
i i

i i

X X
X

X X
α α

α α+


= 


∈
− − ∈

	 (29)

4.2	 Population hierarchy strategy

	 At the late stage of the traditional tuna optimization iteration, each individual spirally forages 
to follow the global optimal solution to a considerable extent, leading to the weakening of the 
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global search ability at the late stage of the algorithm and becoming prone to stagnation. To 
address this problem, we introduced a population hierarchy mechanism, divided the tuna 
population into elite and inferior populations according to the size of fitness, and used different 
perturbation methods for different populations. According to the feature that elite individuals 
contain more effective information of fitness, the elite reverse learning strategy is used in the 
elite population to expand the development comprehensiveness of dominant individuals,(17) and 
the population diversity is increased by constructing the reverse individuals of current elite 
individuals and retaining the individuals with greater fitness among them as the new-generation 
population individuals, where the reverse individuals are constructed as shown in Eq. (30).

	 ( )i i
OpX lb ub Xδ= + − 	 (30)

	 For the disadvantaged population, the crossover variation operator in GA is used to perturb 
it,(18) so that the algorithm is more likely to jump out of the local optimum and strengthen the 
search ability of the algorithm later. If each individual has the same probability of choosing 
crossover, the individual fitness values after the operation are compared with those before the 
operation based on the greedy algorithm idea, and the individuals with greater fitness are 
retained to join the new population generation. The schematic diagram of the population 
hierarchy mechanism is shown in Fig. 7.

4.3	 Flow chart of improved TSO algorithm

	 The overall flow chart of the improved TSO algorithm (ITSO) based on population hierarchy, 
elite backward learning, and genetic variation is shown in Fig. 8.

5.	 Simulation Analysis

	 In this study, power grid operation and maintenance were used as the operation background, 
and the parameters and data used in the simulation experiments were based on the actual 
structural parameters of the exoskeleton and the actual business data of the project.

Fig. 7.	 (Color online) Schematic diagram of the population hierarchy strategy.
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	 To verify the effectiveness and robustness of the ITSO designed in this study, PSO, GA, gray 
wolf algorithm (GWO), and beluga whale optimization algorithm (BWO) were also selected to 
solve the model built in this study.
	 On the basis of the actual human kinematic parameters, the simulation solution was obtained 
using Matlab software, where the algorithm parameters were set as follows: constant a = 0.7 in 
ITSO; particle learning rate c1 = c2 = 1.5 in PSO; crossover rate pc = 0.8 and variation rate 
pm = 0.1 in GA. Moreover, to ensure the fairness of the simulation comparison experiment, the 
maximum number of iterations, T, for all algorithms was set to 1000, and the population size N 
was set to 100.
	 The algorithms were run independently under four groups of conditions with weight ratios 
ω1:ω2 of 6:4, 5:5, 4:6, and 3:7.
	 In Figs. 9(a)–9(d), the iteration curves of each algorithm for a single run under four sets of 
weight ratio conditions are given, indicating that the ITSO designed in this paper outperforms 
similar comparative algorithms in terms of convergence ability and solution efficiency.
	 The operating metrics of each algorithm under each weight value condition are shown in 
Tables 2–5. It is seen that under the ω1:ω2 = 6:4 condition, the objective function values of ITSO 
are improved by 0.14 and 0.08% as compared with those of PSO and GA, respectively. Under the 
ω1:ω2 = 5:5 condition, they are improved by 0.11 and 0.08% as compared with those of PSO and 
GA, respectively. Under the ω1:ω2 = 4:6 condition, they are improved by 0.12, 0.20, and 0.17% as 
compared with those of PSO, GA, and GWO, respectively. Under the ω1:ω2 = 3:7 condition, they 
are improved by 0.11, 0.28, 0.15, and 0.19% as compared with those of PSO, GA, GWO, and 

Fig. 8.	 (Color online) Overall flow chart of ITSO.
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Fig. 9.	 (Color online) Algorithm adaptation iteration curve.

(a) (b)

(c) (d)

Table 2
Operating index of each algorithm (6:4).
Algorithm h2 (mm) l2 (mm) l3 (mm) Objective function value
ITSO 200 400 400 2.2079 × 107

PSO 114.1805 399.8488 399.9801 2.2048 × 107

GA 163.7855 399.7948 399.9815 2.2061 × 107

GWO 200 400 400 2.2079 × 107

BWO 200 400 400 2.2079 × 107

ITSO 200 400 400 2.2079 × 107

Table 3
Operating index of each algorithm (5:5).
Algorithm h2 (mm) l2 (mm) l3 (mm) Objective function value
ITSO 200 400 400 1.8426 × 107

PSO 138.3371 399.9665 399.9153 1.8406 × 107

GA 155.2759 399.9858 399.9206 1.8411 × 107

GWO 200 400 400 1.8426 × 107

BWO 200 400 400 1.8426 × 107

ITSO 200 400 400 1.8426 × 107
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BWO, respectively. The results show that when the optimal parameter solutions of the model are 
[h2, l2, l3] = [200, 400, 400] for all three sets of weight ratio ω1:ω2 conditions, the maximum 
workspace projection area obtained is 7.3383 × 107 mm2.
	 It can be seen from the above results that the performance indexes of ITSO are better in the 
whole process of iterative search, and its solution accuracy is significantly higher than that of 
other similar optimization algorithms, thus verifying the feasibility and applicability of the 
algorithm.

6.	 Conclusions

	 In this study, we took the power-assisted model of operation and maintenance upper limb 
exoskeleton as the research object, and we aimed to investigate the feasibility and optimization 
methods of applying the power exoskeleton device to power grid operation and maintenance. 
From the actual structure and constraints of the four-degree-of-freedom industrial upper limb 
exoskeleton, we constructed its linkage coordinate system model on the basis of the principle of 
positive kinematics and combined the graphical solution method to construct an optimization 
model of the operation and maintenance exoskeleton workspace. An improved tuna algorithm 
based on population hierarchy, elite backward learning, and genetic variation was designed for 
the solution of the proposed model. The effectiveness and robustness of the algorithm designed 
in this study were verified by comparing it with PSO, GA, GWO, and other intelligent algorithms 
horizontally in simulation experiments. The results of this study provide theoretical and practical 
bases for the application of power exoskeleton devices in the field of power grid operation and 
maintenance, and they also provide new ideas and methods for the optimal design of exoskeleton 
devices.

Table 4
Operating index of each algorithm (4:6).
Algorithm h2 (mm) l2 (mm) l3 (mm) Objective function value
ITSO 200 400 400 1.4773 × 107

PSO 125.8053 399.8927 399.9515 1.4755 × 107

GA 59.8354 399.9785 399.9834 1.4744 × 107

GWO 177.9221 399.0779 400 1.4747 × 107

BWO 200 400 400 1.4773 × 107

ITSO 200 400 400 1.4773 × 107

Table 5
Operating index of each algorithm (3:7).
Algorithm h2 (mm) l2 (mm) l3 (mm) Objective function value
ITSO 200 400 400 1.1120 × 107

PSO 126.6630 399.9752 399.9422 1.1108 × 107

GA 7.6704 399.8626 399.9771 1.1089 × 107

GWO 130.4746 399.5354 400 1.1103 × 107

BWO 137.3702 399.2698 400 1.1099 × 107

ITSO 200 400 400 1.1120 × 107
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