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 In this study, we examined the nonlinear ultrasonic effect of closed microcracks in industrial 
plates and derived the relationship between the nonlinear coefficient and the characteristic 
parameters of closed microcracks by analyzing the contact nonlinear ultrasonic theoretical 
model. Firstly, we established the finite element mesh model of closed microcracks in an 
industrial aluminum plate by simulation analysis and excited the S1 mode Lamb wave in the 
plate by the wave structure loading method based on the dispersion curve of the material’s 
nonlinear matching. Secondly, we set up sensor nodes to collect the signal after the interaction 
between the S1 mode Lamb wave and the closed microcracks. Finally, we preprocessed the 
signal to analyze the rule of the change in the level of interaction between the closed microcracks 
and the S1 mode Lamb wave depending on the characteristics. Experimental results show that 
the second-harmonic amplitude and nonlinear coefficient decrease with increasing crack width 
for the closed microcracks, but increase with increasing crack length. These results confirm the 
effectiveness of the contact nonlinear ultrasonic theoretical model.

1. Introduction
 
 The ultrasonic guided wave method is one of the widely used structural damage detection 
methods. The propagation characteristics of ultrasonic guided waves are closely related to the 
elastic characteristics and microstructure of the medium. The structure and performance of the 
medium can be evaluated by extracting and analyzing the ultrasonic information. In particular, 
in large plates or tubular media, ultrasonic guided waves can travel far along the axial direction. 
The ultrasonic guided wave signal collected at a limited receiving position can reflect the 
characteristics of the medium in the whole propagation range. Compared with the traditional 
ultrasonic detection technology, the ultrasonic guided wave has the advantages of speed and 
high efficiency. It has become a research hotspot in the field of nondestructive testing in recent 
years.(1–4) 
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 The traditional ultrasonic detection technology is developed on the basis of the theory of 
linear acoustics, which is characterized by linearizing the nonlinear acoustic equation under the 
assumption of small-amplitude acoustic waves. Nonlinear ultrasonic detection technology has 
high sensitivity to the microstructure characteristics of materials whose space size is much 
smaller than the ultrasonic wavelength. It has special advantages in the evaluation and detection 
of the early performance degradation of materials and early damage inside structures. Both 
geometric and material nonlinearities in the structure can cause the variation of nonlinear 
components in Lamb wave signals. Changes in the characteristic parameters of the nonlinear 
signal in the Lamb wave can be used for the early detection of the structural change caused by 
microcracks.(5,6) In a solid structure, acoustic particle vibration propagates in accordance with 
the stress–strain criterion, and the amplitude of the acoustic wave determines the rule of particle 
vibration. A particle vibration with small amplitude follows the linear proportional relationship 
between stress and strain, while a particle vibration with large amplitude shows a nonlinear 
phenomenon.(7) Although the classical nonlinear coefficient (inherent nonlinearity of the 
material) based on the ratio of fundamental and harmonic amplitudes can be used to describe the 
performance changes caused by a microcrack in a material, the propagation characteristics of a 
nonlinear ultrasonic wave become complicated owing to the diversity of microcracks. When the 
ultrasonic wave encounters contact damage (such as a closed microcrack) in the structure, 
friction and collision phenomena are generated. The higher-order harmonic energy changes 
again, making its energy much higher than that in the classical nonlinear ultrasonic theory. The 
classical nonlinear coefficient cannot be simply used to characterize this type of damage.(8)

 To solve this problem, many scholars began to study the mechanism behind nonlinear 
ultrasonic waves and microcracking, and put forward some nonlinear detection models, such as 
the physical and phenomenological models. The physical model discusses the effect of 
microcracks on the ultrasonic response in accordance with the microphysical mechanism and 
characterizes the mechanical properties of the crack in terms of the contact stiffness of the 
microcrack. The phenomenological model uses the equivalent model to characterize the 
evolution of microcracks and discusses the relationship between nonlinear effects and 
microcracks. Although these two models can characterize the relationship between microcracks 
and nonlinear ultrasonic waves, it is still necessary to further improve the research of closed 
microcracks and nonlinear ultrasonic effects, and the quantitative evaluation of closed 
microcracks. In view of the limitation of using linear Lamb waves to detect microcracks and the 
sensitivity of nonlinear Lamb waves, it is important to study methods of enhancing the nonlinear 
feature of ultrasonic Lamb waves for the early crack identification of plate components. There 
are still many problems to be studied, such as the quantitative relationship between crack 
characteristics and nonlinear Lamb wave signals, the method of analyzing nonlinear Lamb 
waves, and the method of extracting damage evaluation features.(9–11)

 It is difficult to accurately manufacture closed microcracks of desired sizes in the 
experimental thin plates. The accuracy of the closed microcrack size is also difficult to 
guarantee, which had given rise to great obstacles to physical experimentation. Therefore, in this 
study, we examined the nonlinear Lamb wave effect of closed microcracks in the plate structure 
by finite element modeling (FEM) and simulation. We excited a single S1 mode Lamb wave by 
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the wave structure loading method and set up eight sensor nodes to simulate the position of the 
receiving sensor. By collecting the data of the excited S1 mode Lamb wave and the second-
harmonic signal, we confirmed the second-harmonic accumulation effect and analyzed the 
variation of the nonlinear coefficient on changing the size of the microcracks. 

2.	 Theoretical	Model	of	Nonlinear	Ultrasonic	Effect	on	Closed	Microcracks

 Using the micro–hysteretic force–displacement relationship of a single microconvex, Aleshin 
and Van derived the macro–stress–strain constitutive equation of the whole material.(12) It is 
assumed that the microcrack has the characteristics of a plane crack. The azimuth angle φ and θ 
are used to represent the plane crack angle, ψ(θ, φ) is the normal distribution function, aθφ is the 
average width of an opening–closing crack, and A is the width of the crack contact surface when 
internal stress σ = 0. Then, the three-dimensional normal strain can be expressed as
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where SV is the total area of the crack and γii is the lossless time tensor. One-dimensionally, the 
strain can be expressed as

 22
0
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π

= + −∫  (2)

where tensor γ = γzz.
 Because of the existence of contact interfaces, the closed microcracks in platelike structures 
will open and close after encountering ultrasonic waves. This phenomenon can be described by 
the nonlinear spring model described below.(13)

 Let the length of the plate be L and the thickness be D. A simple harmonic ultrasonic signal 
with angular frequency ω is excited on the plate and propagates along the length of the plate. Its 
displacement is x, and the displacement field can be expressed as

 1 1( , ) ( )cos ,u x t U x tω=  (3)

where U1(x) is the standing wave displacement field expressed as

 1 1 1( ) cos .= zU x A k xu  (4)

Here, A1 is the fundamental amplitude of the excitation signal and k1 is the wave number.
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 Suppose that the closed microcrack is located at x0 and its normal direction is parallel to x. w 
is the short axis of the crack (crack width) and l is the long axis of the crack (crack length). The 
internal stress in the contact surface can be expressed as

 0(1 ),Eσ ε β ε= +  (5)

where E is Young’s modulus, β0 is the inherent nonlinear coefficient (classical nonlinear) of the 
material, and ε is the change in crack width.
 According to Hertz contact theory, the contact depth h can be expressed as(14)
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where E and Eʹ	are	Young’s	moduli,	υ and υʹ	are	Poisson’s	ratios,	and	R and Rʹ	are	curvatures.
 Equation (6) shows that the contact depth of the closed microcrack is proportional to the 
amplitude of the excited sound wave. 
 Isotropic materials have the following characteristics:
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 The contact depth h can be expressed as
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 The width of the closed microcrack will change under the action of the excited sound wave, 
which can be expressed as
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By substituting Eq. (8) into Eq. (5), the internal stress can be expressed as
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By substituting Eq. (4) into Eq. (9), we can obtain 
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where the third term on the right of Eq. (10) is the second-harmonic component contained in the 
internal stress, which can be expressed as
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 The displacement field of the second harmonic is expressed as

 2 2( , ) ( )cos 2 ,u x t U x tω=  (12)

where U2(x) is its standing wave displacement field expressed as
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Here, k2 is the wave number of the second harmonic and C1 and C2 are undetermined 
coefficients. Equation (13) can be solved by applying the displacement and boundary conditions 
of the acoustic wave at the closed microcrack.
 When the sound wave propagates to the crack, displacement and stress can be expressed as

 2 0 2 0( ) ( ),U x x U x x− += = =  (14)
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where z0 is the length of the plate in the direction z and F(2ω) is the internal stress corresponding 
to the second harmonic, which can be expressed as
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 The stress–strain relationship of the second-harmonic displacement field can be expressed 
as(15)
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 By integrating Eqs. (11)–(16) and solving Eq. (17), the second-harmonic displacement field 
can be obtained as
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 It can be concluded that the opening–closing action of a microcrack complicates the variation 
of the acoustic displacement field in the plate. The amplitude A2 of the second harmonic is 
affected by the crack width, length, and amplitude of the fundamental wave, and the material 
and structural parameters of the plate. The relationships are as follows.

 
5/3

2
2 14/3

lA A
w

∝  (19)



Sensors and Materials, Vol. 35, No. 5 (2023) 1637

 Equation (19) shows that the ratio of the amplitude of the second-harmonic component to the 
square of the fundamental frequency amplitude can be used to describe the size of the 
microcrack. The ratio is represented by the contact nonlinear coefficient β.

 2
2
1

A
A

β =  (20)

 Therefore, the nonlinear effect of ultrasonic waves in plate structural materials includes two 
parts: material inherent nonlinearity and contact nonlinearity. The unified nonlinear coefficient 
βʹ is expressed as

 0' .β β β= +  (21)

Since β0 << β, the default value is βʹ ≈ β, and the nondestructive evaluation of closed microcracks 
can be carried out directly by using the contact nonlinear coefficient β.

3.	 Lamb	Wave	Dispersion	Characteristics	and	Wave	Structure	Loading	Method

 The stress and displacement fields of the symmetrical mode Lamb wave in the isotropic plate 
are shown as Eqs. (22) and (24), respectively.
 Symmetric mode:

 2 2 2
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 Antisymmetric mode:

 2 2 2
1 1 2( ) sin( )] 2 [ sin( ) sin( )]zz k q A pz p A pz ikqB qzσ λ µ= − + − + , (28)

 2 2
1 2[2 cos( ) ( ) cos( )]xz ikpA pz k q B qzσ µ= + − , (29)

 1 2cos( ) cos( )]zu pA pz ikB qz= − − , (30)

 1 2sin( ) sin( )]xu ikA pz qB qz= − , (31)

 2 2
1 22 sin( ), ( )sin( )A ikq qb B q k pb= = − . (32)

Here, x is the direction of Lamb wave propagation and z is the direction of plate thickness. When 
the wave number k0 and angular frequency ω are substituted into the boundary conditions of the 
free plate (σxz = σzz = 0), the undetermined coefficients A1, A2, B1, and B2 can be obtained by 
substituting the wave number k0 and angular frequency ω into the boundary conditions of the 
free plate (σxz = σzz = 0).
 Furthermore, according to the nonlinear Lamb wave theory, only when the phase velocity of 
the fundamental Lamb wave matches the phase velocity of the second-harmonic Lamb wave 
does the relationship between nonlinear coefficient and propagation distance indicate linear 
growth.(16) Therefore, it is necessary to calculate the nonlinear matched dispersion curves of 
Lamb waves in the application of nondestructive detection and evaluation of the microcrack of a 
plate structure.(17)

4.	 Finite	Element	Modeling	and	Simulation

4.1	 Damage	 model	 of	 plate	 and	 its	 nonlinear	 matching	 Lamb	 wave	 dispersion	
characteristics

 Taking the isotropic aluminum plate as the research object, we carried out the finite element 
modeling and simulation analysis of the nonlinear Lamb wave effect of closed microcracks. The 
material is an AL-6061-T6 aluminum plate, and the material parameters are shown in Table 1, 
where ρ is the density, λ and μ are the second-order elastic constants (Lame constants), and L, M, 
and N are the third-order elastic constants.
 The closed microcrack model is shown in Fig. 1. We set the closed microcrack at 40 mm on 
the left side of the plate. Its shape is an ellipse, the long axis is the length, and the short axis is the 
width. We set the plate length to 200 mm and the thickness to 2 mm. In the simulation 
experiment, we loaded the Lamb wave excitation signal from the left side of the board and set 
multiple sensor nodes on the board to receive the simulation signal at different positions. 
Therefore, it is necessary to set the ultrasonic excitation signal in accordance with the dispersion 
curve and plate structure parameters.
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 According to the dichotomy method, the Lamb wave dispersion curve of this type of 
aluminum plate is shown in Fig. 2. The blue curve is the symmetric mode, the red curve is the 
antisymmetric mode, and the abscissa is the frequency–thickness product ( f • d). Figure 2(a) 
shows the phase velocity and group velocity dispersion curves, and the ordinate is the phase 
velocity Cp. Figure 2(b) shows the group velocity dispersion curve, and the ordinate is the group 
velocity Cg.
 Referring to the data in Fig. 2(a), we obtained the nonlinear matched phase velocity dispersion 
curve by selecting the S1 mode Lamb wave with a frequency of 1.895 MHz (plate thickness of 2 
mm) as the excitation signal (fundamental wave), as shown in Fig. 3. The second harmonic is 
3.79 MHz in the S2 mode and the third harmonic is 5.785 MHz in the S3 mode. Therefore, in the 
simulation experiment, we set the S1 mode Lamb wave excitation signal as a 15-period narrow-
band sine wave signal with a frequency of 1.895 MHz with a Hanning window modulation.

Table 1
Material parameters of AL-6061-T6 aluminum plate.

ρ (kg/m3) 2704

Second-order elastic constants λ (GPa) 67.6
μ (GPa) 25.9

Third-order elastic constants
L (GPa) −41.6
M (GPa) −131
N (GPa) −150.5

Fig. 1. Plate structure and its closed microcrack model.
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Fig. 3. (Color online) Nonlinear matched phase 
velocity dispersion curves.

Fig. 4. (Color online) Wave structure curve of S1 
mode Lamb wave.

 The wave number and angular frequency can be determined from the dispersion curve. The 
wave structure curves of symmetric and antisymmetric mode Lamb waves can be obtained by 
using Eqs. (24), (25), (30), and (31), and they reflect the relationship between displacement and 
plate thickness. For the 2-mm-thick plate with the 1.895-MHz-frequency excitation signal, the 
wave structure curve of the S1 mode Lamb wave is shown in Fig. 4. The red curve is in-plane 
displacement and the blue curve is out-plane displacement. The abscissa is the direction of the 
wave vector and the ordinate is the direction of plate thickness.
 In the finite element model, mesh generation is very important. Moser’s group gave the grid 
computing criterion of finite element simulation, which depended on the wavelength of the 
excitation signal.(18) The maximum size of the grid depends on the phase velocity of the Lamb 
wave, and the following conditions should be satisfied:

 20
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Here, λmin is the minimum wavelength of the Lamb wave, δx is the distance between adjacent 
nodes in the x direction, and δy is the distance between adjacent nodes in the y direction. The 
calculation	criterion	of	time	step	Δt is
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 On the basis of the above rules, we established the finite element simulation model for the 
plate structure and the closed microcrack damage model. The mesh generation of the model is 
shown in Fig. 5. The length of the plate is 200 mm and the thickness is 2 mm. Figure 5(a) shows 
the mesh of the undamaged area, and Fig. 5(b) that of the closed microcrack. By the wave 
structure loading method, we simulated and analyzed the nonlinear Lamb wave characteristics 
of the model.
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Fig. 5. Finite element grid of closed microcrack model in plate. (a) No crack area. (b) Closed microcrack.

4.2	 Simulation	results	and	discussion

 We set the closed microcrack 40 mm away from the left side of the plate and discussed the 
effects of the closed microcracks on the propagation of nonlinear Lamb waves in the two models 
with “the same width and different lengths” and “the same length and different widths”. One 
model has a crack width of 4 µm and the lengths of 0.06, 0.09, 0.12, 0.15, 0.18, and 0.21 mm. The 
other model has a crack length of 0.09 mm and the widths of 2, 10, 40, 70, 100, and 130 µm.
 We set up eight sensor nodes to simulate the position of the receiving sensor and collected the 
data of the excited S1 mode Lamb wave and the second-harmonic signal (the fundamental 
frequency is 1.895 MHz and the second-harmonic frequency is 3.79 MHz). The distances 
between the sensor nodes and the left boundary of the plate are 65, 70, 75, 80, 85, 90, 95, and 
100 mm.
 Firstly, we compared the received signals at each sensor node without and with a microcrack. 
Taking the sensor node at 70 mm as an example, Fig. 6 shows the time domain signal waveform, 
Fig. 7 shows the fundamental frequency spectrum, and Fig. 8 shows the second-harmonic 
frequency spectrum. The results show that the second-harmonic amplitude with a microcrack is 
higher than that without a microcrack.
 Secondly, we analyzed the spectrum of the received signal at each sensor node without a 
microcrack, as shown in Fig. 9. The results show that the second-harmonic amplitude of the 
Lamb wave increases with the propagation distance in the crack-free case. This is consistent 
with the results of classical nonlinear ultrasonic theory that the second-harmonic amplitude 
increases with the propagation distance.(8) It is shown that the second harmonic of the Lamb 
wave has a cumulative effect under this condition, and the validity of using the S1 mode Lamb 
wave excited by the wave structure loading method is verified.
 Furthermore, we analyzed the effect of the size of the closed microcrack on the propagation 
characteristics of nonlinear Lamb waves. To analyze the second-harmonic amplitude effectively, 
a high-pass filter was used to filter the received signal and retain the high-frequency components 
above the second harmonic. Taking the sensor node located at 70 mm as an example, we explored 

(a) (b)
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Fig. 7. (Color online) Fundamental frequency spectrum of the received signal at node at 70 mm. (a) With 
microcrack. (b) Without microcrack.

Fig. 8. (Color online) Second-harmonic frequency spectrum of received signal at node at 70 mm. (a) With 
microcrack. (b) Without microcrack.

Fig. 6. (Color online) Received signal waveform at node at 70 mm. (a) With microcrack. (b) Without microcrack.
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Fig. 9. (Color online) Second-harmonic spectrum at each node without microcrack.

Fig.	10.	 (Color	online)	Second-harmonic	spectrum	of	received	signal	at	node	at	70	mm	with	different	crack	sizes.	
(a)	0.9	mm	length	and	different	widths.	(b)	40	µm	width	and	different	lengths.
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the relationship between the two types of mode cracks (0.9 mm length and different widths; 40 
µm width and different lengths) and the second-harmonic spectrum. The results are shown in 
Fig. 10. The second-harmonic amplitude is directly related to the crack length and width. The 
second-harmonic amplitude decreases with increasing crack width, but increases with increasing 
crack length. This conclusion is consistent with Eq. (19).
 Finally, we analyzed the variation of the contact nonlinear coefficient depending on the size 
(different widths and lengths) of the closed microcrack, as shown in Fig. 11. The results obtained 
at all eight receiving sensor nodes are presented. Figure 11(a) shows the relationship between the 
length of the crack and the nonlinear coefficient. Figure 11(b) shows the relationship between the 
width of the crack and the nonlinear coefficient. The results show that the nonlinear coefficient 
is related to both the length and width of the closed microcrack. The nonlinear coefficient 
decreases with increasing crack width, but increases with increasing crack length. This 
conclusion is consistent with Eq. (20). Therefore, the nonlinear coefficient can be used to 
characterize the change in closed microcrack size.

(a) (b)
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Fig.	11.	 (Color	 online)	 Relationship	 between	 nonlinear	 coefficient	 and	 crack	 size	 at	 each	 node.	 (a)	 Relationship	
between	crack	length	and	nonlinear	coefficient.	(b)	Relationship	between	crack	width	and	nonlinear	coefficient.

5.	 Conclusions

 By theoretical model analysis and simulation, we studied the ultrasonic Lamb wave nonlinear 
effect in an aluminum plate with closed microcracks. We excited the S1 mode Lamb wave in the 
plate by the wave structure loading method, set up multiple sensor nodes to collect the closed 
microcrack damage signal, detected the higher-order mode signal, and analyzed the cumulative 
effect of the second harmonic and the effect of closed microcracks with different lengths and 
widths on the nonlinear coefficient. The results show that the second-harmonic amplitude 
increases with the propagation distance in the plate without microcracks. With closed 
microcracks, the second-harmonic amplitude and nonlinear coefficient decrease with increasing 
crack width and increase with increasing crack length. These results confirm the validity of the 
contact nonlinear ultrasonic theoretical model. The finite element simulation model based on 
this theory is helpful for analyzing the effect of closed microcracks on nonlinear Lamb wave 
characteristics in the plate, and the basic size characteristics of closed microcracks can be 
characterized by the second harmonic and the nonlinear coefficient.
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