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 In this paper, Lü-like chaotic systems, which failed to achieve chaos synchronization via a 
general dynamic control scheme, were chosen for the circuit implementation of chaos 
synchronization based on our proposed advanced ameliorated dynamic control, which combined 
two controllers involving different variables into one controller. This not only simplified the 
controller but also reduced the number of electronic components. Experimental results show that 
our proposed advanced ameliorated dynamic control is feasible and effective and can be applied 
to chaos synchronization sensors.

1. Introduction

 Chaos synchronization(1–5) is an important topic in nonlinear science and has been developed 
extensively. Various schemes of chaos synchronization have been proposed, including linear and 
nonlinear feedback control,(6–8) adaptive control,(9–11) and active control.(12–14) Chaos 
synchronization has been used to develop new methods, control more complex systems, and 
achieve synchronization more efficiently. Moreover, the applications of this concept have been 
explored in a wide range of fields, such as secure communication(15,16) and electronic circuit 
design.(17,18)

 In 1998, static feedback control, which successfully synchronized many systems, was 
proposed. However, this approach failed as systems became increasingly complicated. To 
overcome this problem, Ramirez et al.(19) proposed a scheme in which the static controller was 
replaced with a dynamic controller, and many complex systems including ones that could not be 
synchronized previously were successfully synchronized. The dynamic controller evolved by a 
differential equation was capable of updating the self-estimated value to give the error function 
asymptotic stability. Nonetheless, we doubt that this scheme based on dynamic control will work 
for all complex systems.
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 We re-examined this scheme based on dynamic control and found that it failed to synchronize 
Lü-like chaotic systems.(20,21) Then, we ameliorated the dynamic controller, that is, the 
dynamic controller was replaced with two dynamic ones, each evolved by an individual 
first-order differential equation, to enhance the coupling between systems. In 2022, 
Lu et al.(22) proposed a scheme based on ameliorated dynamic control and successfully 
achieved the chaos synchronization of Lü-like chaotic systems. In this study, we further 
propose a scheme based on advanced ameliorated dynamic control, that is, two controllers 
based on first-order differential equations are combined into one controller based on a 
first-order differential equation, and we implement the circuit. This scheme not only 
simplifies the controller system, but also reduces the number of electronic components. 
Lü-like chaotic systems are used to verify the validity of the implementation of our 
proposed scheme, which can be applied to sensor circuits.
 The paper is organized as follows. First, Sect. 2 presents the synchronization scheme 
based on ameliorated dynamic control. The proposed scheme based on advanced 
ameliorated dynamic control is introduced in Sect. 3. In Sect. 4, the experimental results 
for Lü-like chaotic systems are presented. Finally, the discussion and conclusions are 
provided in Sects. 5 and 6, respectively.

2. Synchronization Scheme Based on Ameliorated Dynamic Control

 This scheme was first proposed in 2022. Consider the following master–slave systems: 
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Here, , n
m sx x ∈  are the state vectors of the master and slave systems, respectively, 

, ,iy i m s∈ =  are the corresponding outputs, function F is assumed to be sufficiently smooth, 
2nB ×∈ , n nC ×∈ , and 2 nH ×∈  are constant vectors, 1h ∈ and 2h ∈ are the dynamic 

controllers, k +∈  is the coupling strength, and α +∈  is a design parameter.
 Assume that the nonlinear function F consists of linear and nonlinear parts:

 ( ) ( ) , , ,i i iF x Ax f x i m s= + =  (4)

where n nA ×∈  is a constant matrix.
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 Then, the error dynamics for the systems in Eqs. (1)–(3) is obtained as
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, g(t, e) = f(xm) − f(xs), 
2ne +∈   is the state vector, 2h∈ , and matrix 

( ) ( )2 2n nA + × +∈  is assumed to be Hurwitz.(17) Since the trajectories of the master system are 
bounded, the term ḡ(t, ẽ) can be regarded as a perturbation that will vanish on e if it satisfies

 ( ) 2
22

, , 0, , ng t e e t e D≤ ∀ ≥ ∀ ∈ ⊂   

 (6)

where 2
⋅  denotes the Euclidean norm. The stability properties of the error dynamics in Eq. (5) 

can be inspected as follows. First, consider the quadratic Lyapunov function

 ( ) ,TV e e Pe=    (7)

where ( ) ( )2 2n nP + × +∈  is a positive definite and symmetric matrix that is the solution of the 
Lyapunov equation

 .TPA A P Q+ = −  (8)

Here, ( ) ( )2 2n nQ + × +∈  is a positive definite and symmetric matrix: a standard choice is Q = I, 
where I is the identity matrix of appropriate dimensions. In addition, a unique solution for 
Eq. (8), P = Pr > 0, always exists because Ā in Eq. (5) has been assumed to be Hurwitz.
 Next, through calculations, the time derivative of the Lyapunov function in Eq. (7) satisfies

 ( ) ( ) ( ) 2
2 ,2min maxV e Q P eλ λ γ≤ − −  



  (9)

where ( )minλ ⋅  and ( )maxλ ⋅  denote the minimum and maximum eigenvalues, respectively.
 When Ā is assumed to be Hurwitz, a sufficient condition for the local stability of the system 
in Eq. (5) is that the bound γ on the perturbation term in Eq. (6) is sufficiently small to satisfy
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3. Synchronization Scheme Based on Advanced Ameliorated Dynamic Control

 Consider the following master–slave systems:
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Here, , n
m sx x ∈  are the state vectors of the master and slave systems, respectively, 

, ,iy i m s∈ =  are the corresponding outputs, function F is assumed to be sufficiently smooth, 
n nC ×∈ , 1nD ×∈ , and 1 nJ ×∈  are constant vectors, h is the dynamic controller, α is a design 

parameter, and k is the coupling strength.
 Since the underlying theory is the same and the calculation is similar to that in Sect. 2, 
except that the dimension of the error dynamics is decreased, the following process is 
omitted. The predominant feature of our proposed synchronization scheme based on 
advanced ameliorated control is that two controllers are combined into one to simplify the 
controller system that facilitates the realization of the circuit.

4. Experimental Results

4.1 Numerical simulation

 Take Lü-like chaotic(20,21) systems as an example.
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Here, (a, c, d, e, f, α, k) = (40, 5/6, 0.5, 0.65, 20, 20, 300). When the error functions are set to 
ex = xm − xs, ey = ym − ys, and ez = zm − zs, the error dynamics can be written in the form of 
Eq. (5) with
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 The characteristic polynomial of matrix Ā in Eq. (17) is given by

 ( ) ( ) ( )4 3 219.167 2 19.167 816.66p kλ λ α λ α λ= + + + + − +

                        ( ) ( )58.334 816.66 666.4 49.98 666.4 0. k kα λ α− + + − + =  (18)

 According to the Routh–Hurwitz stability criterion, the error dynamics of the systems in Eq. 
(17) are globally asymptotically stable if the following condition is satisfied:

 13.9 14 11.4.kα α> ∧ > −  (19)

 Consequently, the proposed advanced ameliorated synchronization scheme successfully 
synchronized Lü-like chaotic systems. The results are shown in Fig. 1, revealing that the error 
functions and the controller asymptotically approached zero. 

4.2 Circuit simulation

 Because the amplitude of the numerical simulation result exceeded the operating voltage of 
the circuit amplifier, we set the scaling factors of the circuit as (xm,ym,zm) = (10Xm, 10Ym, 10Zm), 
(xs,ys,zs) = (10Xs, 10Ys, 10Zs), and h = 10H and set the time scale as τ = 10t and (a, c, d, e, f, α, k) = 
(40, 5/6, 0.5, 0.65, 20, 20, 300). Then, the driving system in Eqs. (14)–(16) becomes as:
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Fig. 1. Time series of (a) xm − xs, (b) ym − ys, (c) zm − zs, and (d) h of error dynamics of Lü-like chaotic systems with 
parameters xm (0) = ym(0) = zm(0) = 0.1, xs(0) = ys(0) = zs(0) = 10, h(0) = 0, α = 20, and coupling strength k = 300 
underlying the proposed synchronization scheme based on advanced ameliorated dynamic control.

 0 . : 200 3000 30 0 3000 3000m s m sH H X X Y Y= − − + − +Dynamiccontrollers   (22)

 To transform the above equations into circuits, the systems in Eqs. (20)–(22) were converted 
to the following systems:
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Here, C1 = C1 = … C7 = 10 nF, R9 = R10 = R17 = R18 = 250 kΩ, R11 = R19 = 200 kΩ, 
R12 = R21 = 10 kΩ, R13 = R15 = R22 = R25 = 50 kΩ, R14 = R24 = 12000 kΩ, R16 = R26 = 153.8 kΩ, 
R20 = R23 = 10000 kΩ, R27 = 500 kΩ, and R28 = R29 = R30 = R31 = 33 kΩ. OrCAD software was 
used to design the above circuit for simulation, and Fig. 2 shows the circuit design of the 
synchronization scheme of Lü-like chaotic systems based on advanced ameliorated dynamic 
control, in which the resistors of the inverting amplifiers are set as R1 = R2 = … R8 = 10 kΩ. 
Figure 3 shows those of the circuit simulation, which match those of the numerical simulation.

4.3 Circuit implementation

 Before implementing the circuit, we designed the PCB using OrCAD Capture and PCB 
Editor. Figure 4 presents the PCB designs of our synchronization scheme of Lü-like chaotic 
systems based on advanced ameliorated dynamic control. Then, we operated a circuit engraving 
machine to print out the circuit board, and we soldered electronic components and connection 
points on it to complete the real circuits shown in Fig. 5. Signals from the real circuits are 
displayed on an oscilloscope to visualize the results of synchronization as shown in Fig. 6.

5. Discussion

 In 2021, the synchronization scheme based on ameliorated dynamic control was proposed to 
successfully synchronize Lü-like chaotic systems that could not be synchronized previously. 
Then, we studied its circuit and successfully simulated it.
 Take the following Lü-like chaotic systems as an example.
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Fig. 3. Plots of circuit simulation results. Time series of (a) xm − xs, (b) ym − ys, (c) zm − zs, and (d) h of error 
dynamics of Lü-like chaotic systems underlying the synchronization scheme based on advanced ameliorated 
dynamic control.

Fig. 4. (Color online) PCB design diagrams of the synchronization scheme of (a) Lü-like chaotic systems with 
(b) advanced ameliorated dynamic controller.

(a) (b)

(c) (d)

(a) (b)
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Fig. 6. (Color online) Plots of oscilloscope signals of (a) xm − xs, (b) ym − ys, (c) zm − zs, and (d) h of error dynamics 
of Lü-like chaotic systems from real circuits underlying the synchronization scheme based on advanced ameliorated 
dynamic control.

Fig. 5. (Color online) Circuit implementation diagrams of the synchronization scheme of (a) Lü-like chaotic 
systems with (b) advanced ameliorated dynamic controller.

(a) (b)

(a) (b)

(c) (d)
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 When the parameters (a, c, d, e, f, α, k) are (40, 5/6, 0.5, 0.65, 20, 21, 440), Lü-like chaotic 
systems can achieve chaos synchronization. However, our purpose was to implement the circuit, 
for which the above scheme was not effective because many electronic components were 
required. Therefore, we continued to refine the scheme and proposed an advanced ameliorated 
dynamic controller that combined the two original controllers into one without decreasing the 
coupling between signals, which was the key to achieving synchronization. Comparing Eqs. (28) 
and (16), it can be seen that the controller is simplified and the number of electronic components 
is reduced. The results of the circuit implementation are shown in Fig. 6, which reveals that the 
error functions are asymptotically stable and the controller asymptotically approaches zero, that 
is, no additional controller is required when synchronization is achieved.

6. Conclusions

 We improved and proposed the synchronization scheme based on advanced ameliorated 
dynamic control, and we not only performed a circuit simulation but also successfully 
implemented the circuit. Experimental results verified the feasibility and effectiveness of our 
proposed synchronization scheme, which could be applied to sensor circuits.
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