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 Owing to the requirement of ever-increasing machining accuracy in tool machinery, the 
research on how to optimally design a reliable high-rigidity computer-numerical-controlled 
(CNC) machine tool is increasing in importance. Conventionally, machine designers carried out 
design optimization by attempting to maximize only the static stiffness. Nowadays, for high-
precision machining, a good machine tool should have high rigidity not only under static stimuli 
but also under dynamic stimuli. The dynamic rigidity of the machine structure is thus receiving 
increasing attention. In this study, we propose an integral-stiffness-based optimization 
methodology for designing the optimal structure of a CNC horizontal machining center (HMC). 
The proposed novel optimization methodology is mainly based on Taguchi’s experimental 
method, the finite element method (FEM), and gray relational analysis (GRA). In addition, some 
specifically designed experiments on machine stiffness are performed using displacement 
sensors to verify the calculation results. The optimization parameters consist of the static 
stiffness, the first natural frequency, and the dynamic stiffness. Through the use of our proposed 
methodology, the optimal structural dimensions of the target HMC that give high integral 
rigidity can be determined. Moreover, the proposed optimization methodology provides a good 
guide for machine designers to design the high-rigidity structure of a CNC machine tool 
efficiently and accurately. 

1. Introduction and Literature Review 

 With the requirement of higher dimensional accuracy for complex metal workpieces in the 
car, cell phone, and mold-making industries, the research on how to optimally design reliable 
high-rigidity computer-numerical-controlled (CNC) machine tools is attracting increasing 
attention. Specifically, CNC horizontal machining centers (HMCs) have been developed for 
machining as many metal workpieces as accurately as possible in one clamping. However, high-

mailto:m18316252648@163.com
https://doi.org/10.18494/SAM4117
https://myukk.org/


1222 Sensors and Materials, Vol. 35, No. 4 (2023)

precision machining is not easy to attain for an HMC since its structure is asymmetric and 
complicated, and the design of the optimal structure for such HMCs remains a challenge. 
 When a machine tool is in operation, a cutting force is induced between the tool and the 
workpiece. This cutting force comprises two types of force. One is the static force, which may 
affect the geometric accuracy of the workpiece. The other is the dynamic force, which may 
affect the surface roughness of the workpiece. Deformation may occur when the machine 
structure is subject to cutting forces. For a machine tool, the static stiffness is defined as the 
applied static force divided by its resultant deformation, and the dynamic stiffness is defined as 
the applied dynamic force divided by its resultant deformation. Conventionally, machine 
designers have only been concerned with static stiffness. However, with the increasing demands 
regarding machining accuracy, the deformation induced by dynamic stimuli or resonance can no 
longer be ignored and should be considered seriously. Therefore, the goal of the structure 
optimization of a machine tool should be to obtain high static stiffness as well as high dynamic 
stiffness, but the variation of the machine weight should be controlled within a suitable range. 
These requirements result in the need to design machine structures with high resistance to the 
applied static and dynamic forces. There have been many studies on the structure optimization 
of components in a machine tool, such as the spindle, bed, and column.(1–3) Heng et al.(4) 
employed a topology optimization method to improve the rigidity of the rib plate in a machine’s 
column. Liusheng et al.(5) investigated the optimization problem of a lathe bed using dynamic 
characteristic analysis. In short, previous studies adopted optimization schemes based on a 
structure analogy, the finite element method (FEM), and experience-based design, where only 
static stiffness was considered.(6–10) Regarding the high structural strength required for modern 
precision tool machinery, the existing machine-structure design methodologies are far from 
sufficient. Furthermore, many investigations on structure optimization problems for modules or 
whole machines have been reported. For example, Lei et al.(11) used the modal strain energy 
sensitivity to optimally design the bed structure of a CNC machine tool. Jie(12) studied a 
lightweight structural optimization design system for a gantry machine tool. Guodong et al.(13) 
investigated the design schemes of reconfigurable machine tools based on multiple-attribute 
decision-making. Wang et al.(14) designed and developed a five-axis machine tool with high 
stiffness. Liu et al.(15) studied the optimization problem of an electrical discharge machining 
(EDM) machine tool based on computer-assisted engineering (CAE) simulations. Lin et al.(16) 
explored a suitable method of optimally designing an HMC. Ta et al.(17) studied the optimization 
design problem of CNC machine tools by a multidisciplinary approach. Wu et al.(18) proposed a 
tolerance modeling method to increase the static geometric accuracy of a machine tool. Recently, 
with the development of highly rigid machine structures, increasing importance has been 
attached to the dynamic responses of machines.(19,20) In summary, the optimal consideration of 
both the static and dynamic stiffnesses of the machine structure is a prerequisite for designing a 
good machine tool. 
 For machine tools, the static and dynamic stiffnesses are the most crucial parameters 
affecting their machining accuracy. The static stiffness represents the resistance to deformation 
when the machine is subject to a static force. The modal shapes of a machine are the resultant 
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deformations under free oscillations at different natural frequencies, which may provide an 
insight into the machine resonance. The dynamic stiffness represents the dynamic response of a 
machine under periodic stimuli of external forces. The above three parameters of static stiffness, 
natural frequency, and dynamic stiffness mutually affect each other. Sometime a high-static-
stiffness machine exhibits large dynamic deformations or, even more seriously, damage due to 
resonance or certain applied dynamic stimuli. Thus, an integrative investigation on the effect of 
these three parameters is of marked importance in optimally designing machine tools. 
 With the above background, in this study, we propose a novel integral-stiffness-based 
methodology that mainly considers the effects of the three parameters to solve the structure 
optimization problem of a target HMC. We adopt the well-known Taguchi’s experimental 
method,(21) also known as the factorial design of experiments, which may effectively reduce the 
required number of experiments while still capturing the effects of controlled variables on target 
variables. To verify our simulation results, we perform some experiments to measure a machine’s 
static stiffness using some displacement sensors. The proposed integral-stiffness-based 
optimization scheme is mainly based on FEM, Taguchi’s experimental method, and gray 
relational analysis (GRA). Details are addressed in the following section.

2. Optimization Procedure

 Our proposed integral-stiffness-based optimization methodology mainly consists of seven 
steps, as illustrated in Fig. 1. Step 1: We select a CNC HMC as the target machine since its 
structure is highly asymmetric and complicated. Its major structural components are a long 
T-type base with a working table on it and a movable, vertical, and rectangular hollow column 
with a horizontal ram inside it. There is also a milling spindle installed inside the ram. Although 
this type of HMC has the advantages of high efficiency and precision in machining, being 
capable of four-face machining in one clamping, it is prone to large deformations when subject to 
cutting forces owing to its complicated and asymmetric structure. This type of machine thus 
provides a good opportunity to test our proposed structure optimization methodology. Step 2: 
We develop a prototype HMC based on past design experiences. Step 3: We establish a set of 
Taguchi’s orthogonal arrays (OAs) to study the effects of structure-shape parameters on the 
machine stiffness. Then, the static and dynamic responses of the HMC are investigated via FEM 
in Steps 4 and 5, respectively. Step 6: We propose the concept of integral stiffness and 
accordingly analyze previous results via GRA to obtain an optimal structure for the HMC. 
Step 7: We verify the optimal structure via experimental measurements of the machine’s static 
deformation using displacement sensors. 

3. Theoretical Background

 Our proposed integral-stiffness-based optimization methodology comprises four theories: 
solid mechanics, Taguchi’s experimental method, FEM, and GRA. Details are given as follows.
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Fig. 1. (Color online) Flow chart of proposed integral-stiffness-based optimization methodology.

3.1	 Solid	mechanics	and	finite	element	method

3.1.1 Finite element method

 FEM is a popular method of analyzing the structural parameters of a machine tool, such as 
stress, strain, and displacement.(22–26) Many calculation software packages have been developed 
for FEM applications, such as CREO, ANSYS, and NASTRAN(27,28) Among them, ANSYS 
shows good calculation performance in analyzing various physical problems.(29–33) 
 In this study, we adopt ANSYS for FEM calculations. The procedure in ANSYS mainly 
consists of three steps: (1) a pre-processing phase: establishing the solution domain, selecting 
shape functions, calculating the global stiffness matrix, and applying restrictions; (2) a solution 
phase: solving governing equations to acquire the nodal displacement, strain, and stress; (3) a 
post-processing phase: calculating natural frequencies and stiffness and plotting deformation 
figures.
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3.1.2 Principles of mechanics

 Static Response: When a load is applied to a certain body, the force balance equation can be 
expressed in matrix form as

 [K]{Y} = {F}, (1)

or

 [K]{Y} = {Fe} + {Fr}, (2)

where 
1

[ ] [ ]n
si

K K
=

=∑ is the stiffness matrix of the system; {Y} is the displacement vector; n is 
the number of elements; [Ks] is the stiffness matrix of the elements; {Fr} and {Fe} are the 
reaction load vector and the total external force vector, respectively.
 Modal analysis: In modal analysis, it is assumed that there is no damping effect, the structure 
material is linear in its elasticity, and none of the physical properties change with time. Since 
there is no actual force applied to the structure, the structure is under free oscillation. The 
governing equation is

 [ ] [ ]{ } { }
..

{ } 0M Y K Y+ = , (3)

where [M] is the mass matrix of the system. Since the motion of the structure is harmonic, we 
may assume that the displacement has the form

 { }{ } ij t
i

Y Y e= ω , (4)

where [Y]i is the amplitude for the ith frequency ωi. Substituting Eq. (4) into Eq. (3), we have

 [ ] [ ] { }2 { } 0i iK M Y − = ω . (5)

 This is an eigenvalue problem. Non-trivial solutions exist when

 [ ] [ ]( )2det 0iK Mω − =  . (6)

 From Eq. (6), we may obtain the natural frequencies {ωi} and their corresponding modal 
shapes [Y]i.
 Dynamic response: Supposing that a time-variant force {F(t)} is applied to a structure, the 
governing equation of the force balance can be written as
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 [ ] [ ] [ ]{ } { }
.. .

{ } { } ( )M Y C Y K Y F t+ + = , (7)

where [C] is the damping matrix. We assume

 { ( )} { }i i t
maxF t F e eψ ω=  (8)

and

 { } { }i i t
maxY Y e eφ ω= , (9)

where Fmax is the maximum external force, ψ is the phase angle of the force, Ymax is the 
maximum displacement, and ϕ is the phase angle of the displacement. Substituting Eqs. (8) and 
(9) into Eq. (7), we obtain the final equation of the structural dynamic response as

 [ ] [ ] [ ]( ){ } { }2 i i
max maxY e F eM i C K φ ψω ω =− + + . (10)

 The displacement vector of the dynamic response {Ymaxeiϕ} is obtained by solving Eq. (10).

3.2 Taguchi’s experimental method

 In experimental studies, there are usually many influential factors. To reduce the number of 
experiments, we adopt Taguchi’s experimental method,(21) which is a factorial design of 
experiments. An experimental method of obtaining the maximum amount of information by 
choosing a limited number of experiments is defined as the partial factorial experiment (PFE). 
Taguchi’s experimental method adopts a set of OAs in PFE. Usually, there are two, three, or at 
most four levels in an OA. Taguchi’s experimental method comprises four steps: 1. determination 
of influential parameters; 2. design of experiments; 3. parameter analysis; 4. confirmatory test.

3.3 GRA

 GRA is a frequently used correlation analysis method for discrete data sequences and a 
powerful tool in dealing with insufficient data. The procedure of GRA is illustrated as 
follows.(34)

Step 1: Establish the initial data sequence

 

(0) (0) (0) (0)
1 1 2 1
(0) (0) (0) (0)
2 2 2 2

(0) (0) (0) (0)

{ (1), (2),..., ( )}
{ (1), (2),..., ( )}

...
{ (1), (2),..., ( )}n n n n

x x x x m
x x x x m

x x x x m

 =
 =


 =

. (11)
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Step 2: Normalize this initial data sequence as

 
(0)

* ( )( ) , 1, 2,..., ; 1, 2,...,i
i

x kx k i n k m= = =
η

, (12)

  where η is the initial value, η = xi
(0)(1), and * *{ ( )}i iX x k= .

Step 3: Choose a data sequence of *
0X  from *

iX as follows:

 * * * *
0 0 0 0( ) { (1), (2),..., ( )}X k x x x m= . (13)

Step 4:  Obtain the norm sequence Γi = {Δ0i(1), Δ0i(2), ..., Δ0i(m)} whose element is the absolute 
value of the difference between the data and the initial sequence, i.e.,

 * *
0 0( ) ( ) ( )∆ = −i ik x k x k . (14)

Step 5: Calculate the extreme values of the above norm sequences:

 0 01 11 1
max max ( ), min min ( )α ∆ β ∆

= == =
= =

n m n m

i ii ki k
k k . (15)

Step 6: Calculate the gray relational coefficient

 0
0

( ) , [0,1]
( )i

i

k
k
+ ⋅

= ∈
∆ + ⋅
β λ αγ λ

λ α , (16)

   where λ is the distinguishing coefficient, which represents the contrast between the 
measured and reference data. Usually, λ is chosen as 0.5.

4. Results and Discussion

4.1 Static and dynamic responses of prototype

 The prototype of our target HMC is initially designed by professional designers with over a 
decade of experience in developing CNC machine tools. This prototype (Case 1) is shown in 
Fig. 2.

4.1.1 Restricted conditions and grid-independent tests

 Three forces with a magnitude of 100 Kgf are applied to the spindle tip in the X, Y, and Z 
directions as shown in Fig. 3. The structure material is chosen as graphite cast iron. In mesh 
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Fig. 2. (Color online) Configuration of HMC prototype.

Fig. 3. (Color online) Meshing result and applied forces in Case 1.

independence tests, a total of four different meshes with sequentially minimal mesh element 
sizes of 10, 7.5, 5, and 2.5 mm are chosen. We find that the relative deviations of the first natural 
frequency between the first three mesh elements and the final mesh elements are 0.81, 0.49, and 
0.04 %, respectively. Therefore, we can choose the minimal mesh element size of 5 mm as the 
calculation basis in the following FEM calculations to reduce computation time while 
maintaining accuracy. A meshing result of the HMC prototype with 1058037 nodes and 555020 
elements is shown in Fig. 3.

4.1.2	 Static	stiffness

 Through FEM calculations, we obtain the static stress, strain, and displacement distributions 
of the target HMC in Case 1. Sketch maps of the distributions for these parameters are shown in 
Fig. 4. A maximal displacement of 44.53 μm appears at the tip of the horizontal spindle 
[Fig. 4(c)]. The static stiffness of the whole machine is defined as Ks = Fs / δ1, where Fs is the 
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(a)

Fig. 4. (Color online) Static stress, strain, and displacement distributions in Case 1. (a) Stress distribution in Case 
1, (b) strain distribution in Case 1, and (c) displacement distribution in Case 1.

(b)

(c)
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Fig. 5. (Color online) Natural frequencies of free vibration in Case 1.

applied static resultant force and δ1 is the corresponding maximal displacement. Accordingly, 
we may calculate the total static stiffness of the target HMC as Ks = 3.89 Kgf / μm. A maximal 
von Mises stress of 44.5 MPa [Fig. 4(b)] and a maximal strain of 1.66 × 10−5 [Fig. 4(a)] are also 
found to appear at the same tip position of the horizontal spindle. The obtained displacements of 
module parts for our target HMC can be expressed in descending order as

 
column bedspindle ram> > >δ δ δ δ . (17)

 The spindle head obviously has the greatest deformation among all module components. 
Since the static stiffness represents the robustness of a machine under the applied static force, 
here we choose Ks as one of the structural optimization parameters, where a larger value is 
better.

4.1.3 Mode shape

 The mode shape analysis of the natural oscillation in a machine may provide a clear insight 
into the bias of the dynamic interaction at the interface between module components. The 
rigidity of a whole machine may be modified through the useful dimension data obtained by 
investigating the deformation types of different mode shapes and the fragile parts of the machine 
structure. 
 We now calculate the natural frequencies of the target HMC via Eqs. (3)–(6). The first 50 
natural frequencies (M1–M50) obtained are shown in Fig. 5 and the first 10 mode shapes 
obtained are shown in Fig. 6. For example, the first two mode shapes (M1 and M2) show that the 
vertical column deforms forth and back at f = 24.0 Hz and f = 25.8 Hz. The third mode shape 
(M3, f = 39.3 Hz) corresponds to an upward deformation of the bed at the left end. The fourth 
mode shape (M4, f = 44.5 Hz) represents a type of clockwise-twist deformation of the vertical 
column. The fifth mode shape (M5, f = 59.3 Hz) corresponds to an upward deformation of the 
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Fig. 6. (Color online) First ten mode shapes in Case 1.

bed at the right end. The sixth mode shape (M6, f = 65.1 Hz) represents a type of 
counterclockwise-twist deformation of the vertical column. From the first six mode shapes that 
frequently appear during machine operations, it is found that the dimension parameters of the 
vertical column and the base are crucial factors in designing a high-rigidity machine. 
Accordingly, in Taguchi’s experimental method, we may set the dimension variations of the 
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Fig. 7. (Color online) Maximal deformation distribution in Case 1.

modular components as column length CL (three levels: 2810, 3091, and 3372 mm), column 
width CW (three levels: 1724, 1896.4, and 2068.8 mm), base height BH (three levels: 550, 605, 
and 660 mm), and base width BW (three levels: 2005, 2205.5, and 2406 mm). On the basis of 
resonance considerations, we choose the first natural frequency of the whole machine structure, 
denoted by fs, as one of the structural optimization parameters, where a smaller value is better.

4.1.4 Dynamic response

 Using Eqs. (7)–(10), we now calculate the dynamic response of the target HMC under the 
stimuli of periodically applied forces. Three dynamic forces of 100 Kgf are applied to the spindle 
tip in the X, Y, and Z directions with harmonic frequencies in the range between 0 and 500 Hz. 
The obtained variation of the maximal deformation with the frequency is shown in Fig. 7. Two 
deformation peaks of 486 and 378 μm are found at 35.9 and 148.4 Hz, respectively. External 
stimuli with frequencies similar to these two frequencies will induce large deformations or even 
failure during machining. The dynamic stiffness of the target HMC can then be calculated via 
the formula /d d dK F′ = δ , where Fd is the applied harmonic force and δd is its corresponding 
maximal deformation at a certain stimulus frequency. The obtained variation of the dynamic 
stiffness with the stimulus frequency is shown in Fig. 8. The global maximal dynamic stiffness 
is found to be dK ′  = 0.356 kgf/μm at 35.9 Hz, which can be defined as the “total dynamic 
stiffness”, and denoted by Kd. Consequently, we choose Kd as one of the structural optimization 
parameters, where a larger value is better.

4.1.5	 Experimental	verification

 To verify the simulation results, we now perform a deformation measurement. The 
experimental setup mainly includes a load cell and some displacement sensors, as shown in 
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Fig. 8. (Color online) Dynamic stiffness distribution in Case 1.

Fig. 9. (Color online) Setup of deformation measurement system.

Fig. 9. Six sensors of the strain gauge are attached to the front end of the horizontal spindle head 
to measure the deformation induced by the applied static force. We then apply forces of 100 kgf 
in the X, Y, and Z directions at the front end of the spindle through the load cell. The measured 
total composite deformation is 48.06 μm, which differs from the simulation result by 3.53 μm. 
Therefore, we infer that the following simulation results are satisfactory. 
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Table 1
Taguchi’s orthogonal array of L9(34). (unit: mm)
Experiment CL CW BH BW
Case 1 2810 (level 1) 1724 (level 1) 550 (level 1) 2005 (level 1)
Case 2 2810 (level 1) 1896.4 (level 2) 605 (level 2) 2205.5 (level 2)
Case 3 2810 (level 1) 2068.8 (level 3) 660 (level 3) 2406 (level 3)
Case 4 3091 (level 2) 1724 (level 1) 605 (level 2) 2406 (level 3)
Case 5 3091 (level 2) 1896.4 (level 2) 660 (level 3) 2005 (level 1)
Case 6 3091 (level 2) 2068.8 (level 3) 550 (level 1) 2205.5 (level 2)
Case 7 3372 (level 3) 1724 (level 1) 660 (level 3) 2205.5 (level 2)
Case 8 3372 (level 3) 1896.4 (level 2) 550 (level 1) 2406 (level 3)
Case 9 3372 (level 3) 2068.8 (level 3) 605 (level 2) 2005 (level 1)

Table 2
Results of Taguchi’s experimental method. 
Experiment CL CW BH BW δs (μm) Ω
Case 1 2810 1724 550 2005 0.0445367 −27.026
Case 2 2810 1896.4 605 2205.5 0.0437095 −27.188
Case 3 2810 2068.8 660 2406 0.0407841 −27.790
Case 4 3091 1724 605 2406 0.0436339 −27.204
Case 5 3091 1896.4 660 2005 0.0408882 −27.768
Case 6 3091 2068.8 550 2205.5 0.0347558 −29.179
Case 7 3372 1724 660 2205.5 0.0432528 −27.280
Case 8 3372 1896.4 550 2406 0.0419602 −27.543
Case 9 3372 2068.8 605 2005 0.0406196 −27.825

4.2 Taguchi’s experimental method 

 On the basis of the previous discussion, we now choose three parameters as the decision 
factors for optimization: the total static stiffness at the spindle nose (Ks), the first natural 
frequency ( fs), and the total dynamic stiffness (Kd). Four shape parameters, CL, CW, BH, and 
BW, are chosen as the controlled factors, and each controlled factor has three levels, as given in 
Sect. 4.1.3. Accordingly, we construct a Taguchi’s orthogonal array of L9(34), and only nine cases 
must be examined experimentally, as shown in Table 1. 

4.3 Structure optimization

4.3.1 Optimization based on static rigidity

 We first calculate the displacement, stress, and strain distributions via FEM in all nine cases. 
The obtained maximal deformations, occurring at the spindle tip, in all cases are shown in Table 
2. Case 6 has the smallest δs of 0.0406 μm, which means that this case has the largest total static 
stiffness of Ks = 4.98. To examine the effects of the shape parameters in greater depth, we define 
the signal-to-noise ratio as



Sensors and Materials, Vol. 35, No. 4 (2023) 1235

Table 3
Effects of controlled parameters on signal-to-noise ratio.
Level CL CW BH BW
Level 1 −27.335 −27.17 −27.916 −27.540
Level 2 −28.050 −27.412 −27.406 −27.882
Level 3 −27.549 −28.598 −27.613 27.512
Influence 0.715 1.428 0.51 0.37

Table 4
FEM simulation results of Ks, fs, and Kd in cases 1–9.
Cases Ks (kgf/μm) fs (Hz) Kd (kgf/μm)
1 3.89 23.00 0.356
2 3.96 28.12 0.411
3 4.25 32.63 0.455
4 3.97 34.51 0.477
5 4.24 39.52 0.489
6 4.98 42.78 0.516
7 4.00 29.11 0.522
8 4.13 35.42 0.531
9 4.26 31.89 0.399

 2
1010 log ,δΩ = s  (18)

where a smaller value is better. From the data of δs listed in Table 2, we obtain the signal-to-noise 
ratio in all cases via Eq. (17) and then calculate the effects of the four controlled parameters on 
the signal-to-noise ratio (shown in Table 3). It can be seen from Table 3 that, among all shape 
parameters, CW has the largest effect on the structure deformation. This finding provides the 
design guide that a change in CW (where a larger value is better) is an effective way to enhance 
the rigidity of the machine. Furthermore, the effects of the four shape parameters decrease in the 
order CW > CL > BH > BW. Moreover, the HMC with the following shape parameters and levels 
will exhibit the greatest static rigidity among all cases.

  CL = 3091 mm (level 2), CW = 2068.8 mm (level 3), BH = 550 mm (level 1), BW = 2205.5 mm (level 2) (19)

 As expected, this corresponds to Case 6, which has the smallest δs among the cases. 

4.3.2	 Optimization	based	on	integral	stiffness

 In addition to the static rigidity, we must also consider the dynamic rigidity of the machine. 
Through FEA, we obtain Ks, fs, and Kd in the above nine cases, as listed in Table 4. Case 6 has 
the largest total static stiffness of Ks = 4.98 kgf/μm (the larger the better) and the largest first 
natural frequency of fs = 42.78 Hz (the larger the better), but Case 8 has the greatest total 
dynamic stiffness of Kd = 0.531 kgf/μm. There is clearly a structure–performance conflict 
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Fig. 10. (Color online) Gray relational grades of all experimental cases.

between the static and dynamic responses of our target HMC. Although the HMC in Case 6 has 
the highest total static stiffness, it has only the third highest total dynamic stiffness. 
 To clarify the overall structural performance of the HMC in all cases, we now introduce the 
concept of integral stiffness. We simultaneously consider three stiffness parameters: Ks (static 
strength of machine), fs (first part of dynamic strength of machine), and Kd (second part of 
dynamic strength of machine). Then, we apply GRA to clarify in greater depth the structural 
strength of the HMC based on the integral stiffness. 
 First, we normalize the data listed in Table 4 using Eq. (12). Second, we calculate the 
difference in the normalized data using Eq. (14). Finally, we calculate the gray relational 
coefficients in all nine cases using Eq. (16). The obtained result is shown in Fig. 10. Case 6 has 
the highest gray relational coefficient of 0.983. From the viewpoint of integral stiffness, Case 6 
has an optimal structure that performs well in the three aspects of static response, resonance, 
and dynamic response. Case 5 (gray relational coefficient: 0.958) and Case 9 (gray relational 
coefficient: 0.97) also have high integral stiffness. Note that an optimal machine structure may 
have high static rigidity but low dynamic rigidity or vice versa. Consequently, to design a 
suitable machine structure, it is important to consider the integral stiffness (including the static 
stiffness, first natural frequency, and dynamic stiffness). 

4.4 Dynamic response of optimal structure of HMC

 Since Case 6 has an optimal structure, we now study its dynamic response in greater depth. 
The FEM-obtained variations of the maximal deformation and the corresponding dynamic 
stiffness distribution with the frequency are shown in Figs. 11 and 12, respectively. It is seen 
from Fig. 12 that two large peak deformations of 148 and 105 μm appear at 40.0 and 149.6 Hz, 
respectively. Note that when operating around these two frequencies, our target HMC will 
exhibit abnormal oscillations, inducing large machining errors or, worse, damage to machine 



Sensors and Materials, Vol. 35, No. 4 (2023) 1237

Fig. 11. (Color online) Maximal deformation distribution for optimal structure (Case 6).

Fig. 12. (Color online) Dynamic stiffness distribution for optimal structure (Case 6).

parts. Compared with the peak deformations in Case 1 (486 and 378 μm), the two peak values in 
Case 6 (148 and 105 μm) are much smaller. The largest total dynamic stiffness is found in Case 8 
(Kd = 0.531) among the nine cases. 

4.5	 Verification	and	comparison

 We compare the results of this study with those of a previous study on the static and dynamic 
rigidities of a CNC machine tool. Wagner(28) investigated a design optimization method based 
on the static stiffness of a grinding machine. They found that for the considered grinding 
machine, the maximum static deformation was 13.1 μm, slightly less than the maximum static 
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Fig. 13. (Color online) Final HMC optimized via the proposed design methodology.

deformation of 143 μm in Case 6 in this study. In contrast, the optimal target structure in the 
previous study had a maximum dynamic deformation of 486 μm at 35.9 Hz, compared with only 
148 μm at 40 Hz in this study. A deviation between the static and dynamic rigidities commonly 
exists for machine tools. The goal of this study to find an appropriate design methodology to 
optimally design a highly rigid machine by simultaneously considering the static and dynamic 
rigidities. Through the use of our proposed integral-stiffness-based methodology, a new highly 
rigid CNC HMC is expected to be realized, as shown in Fig. 13.

5. Conclusion

 In this research, a novel integral-stiffness-based methodology is proposed to optimally design 
a CNC HMC with high rigidity. Starting from a prototype structure designed on the basis of 
experience, we examine the static and dynamic stiffnesses of the target HMC and find the 
possible variation of the shape parameters of the structure for optimization. Then, we construct 
Taguchi’s orthogonal array of L9 (34) and perform nine FEM simulation experiments. Through 
GRA, it is found that Case 6 has the optimal structure. Although Case 8 has the greatest total 
dynamic stiffness, it does not have the greatest overall structure performance. To verify the 
calculation results, we perform some measurement experiments on machine stiffness using 
strain gauge sensors. We also compare the static stiffness with those of other types of machine. 
Although the static stiffness is a conventionally considered factor that significantly affects the 
deformation of a machine during machining, a full consideration of the whole static stiffness, the 
first natural frequency, and the whole dynamic stiffness of the machine is a more appropriate 
way to design a highly rigid CNC machine tool.
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