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	 With the development of the census and monitoring of national geographical conditions in 
China, the availability of information has sharply increased. Progress in data mining methods 
and social application tools has provided a way for solving the problems of low resource 
allocation and high uncertainty in decision-making regarding planning. To relieve non-capital 
functions and serve the healthy development of the Beijing Metropolitan Area, we propose a new 
model of self-adaptive cellular automaton based on ensemble learning (EL-CA). The method is 
based on the data collected by monitoring geographical conditions and is guided by complex 
geocomputing that simulates city-scale evolution in Beijing. A comparison of predicted and real 
data for Beijing in 2015 demonstrated that the predictions made by the EL-CA model proposed 
significantly outperformed those by traditional cellular automaton (CA) models based on 
empirical statistics. Data on the geographical conditions in Beijing in 2007 and 2015 were 
employed in model simulation and training to predict the scale of the city in 2023. The urban 
agglomeration points in Beijing tended to be dense, the overall construction land tended to be 
saturated, and the growth rate of land use areas slowed. Results from the model also established 
that the construction land in Beijing is close to saturation from a quantitative perspective, and 
the potential urban expansion hotspots in the future are mainly concentrated in the Tongzhou 
District, the Daxing District, the Fangshan District, the south side of the fourth and fifth ring 
roads, and the southwest side of Pinggu District. These results can provide decision-makers in 
urban planning with supporting data and support Beijing to relieve Beijing of functions 
nonessential to its role as China’s capital.
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1.	 Introduction

	 National geographical conditions comprehensively express the nature, economy, and human 
geography at a country’s macro level, which is an important part of basic national conditions. A 
survey of geographical conditions based on remote sensing technology is one of the main aspects 
of work in monitoring land space in China in recent years. Remote sensing images are an 
important data source for the survey of geographical conditions. Surveys of geographical 
conditions use interpretation technology on remote sensing images to achieve rapid extraction 
and accurate interpretation of geographical information. Monitoring national geographical 
conditions involves the investigation and observation of status quo and evolution of national 
geographical information. National conditions and national strength can be accurately and 
effectively captured by research and statistics based on national geographical information in a 
certain space and over time. As a subset of national geographical conditions, urban geographical 
conditions include natural, economic, and human geographic elements, such as urban area and 
layout, urban topography and land use, population distribution and density, road traffic, and 
urban expansion. Monitoring of the geographical condition of cities includes two primary 
aspects: important geographical information and evolutionary geographical information. The 
former is visualized by carriers such as maps and images, whereas the latter is distributed 
orderly over time. The direction of future development can be analyzed and predicted by 
research on how regularly information changes with time.(1–2)

	 With rapid economic growth, urban population continues to grow, urban scale continues to 
expand, and urban construction areas continue to increase. This has caused a series of social and 
ecological problems such as traffic congestion, uneven distribution of social resources, and 
deterioration of the ecological environment. The evolution of urban scale is affected by many 
things, including geographical conditions, social economy, infrastructure, population, and 
national policies and regulations. Therefore, the evolution of urban scale is highly complex. To 
identify the rules of urban scale evolution, we must first explore the inner driving factors that 
deeply affect urban scale. After that, we can accurately predict future trends in urban scale 
development and take effective measures to provide support for the planning and construction of 
rational and sustainable cities.
	 The data acquired by the completion of the first census of national geographical conditions 
provide an opportunity to study the evolution of urban scale over a large time span. We 
investigated the national geographical information on urban construction land in Beijing. By 
summarizing the strengths and weaknesses of the former methods of research in urban-scale 
simulation, urban cellular automaton (CA), a self-adaptive method of CA geographical 
simulation based on ensemble learning (EL), is proposed. We simulated the dynamic evolution 
of urban agglomeration in Beijing under the influence of various policies and other unchanging 
factors and forecast its future development. Our prediction highlights the key areas that need 
attention to alleviate Beijing urban agglomeration in the coming years. It also provides strong 
support for Beijing to relieve Beijing of functions nonessential to its role as China’s capital and to 
promote the coordinated development of the Beijing Metropolitan Area.(3)
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2.	 Research Area and Data Sources

	 Beijing, the capital of China, is the center of politics, economy, culture, education, and 
international exchange. It is located between 115.7°–117.4° E and 39.4°–41.6° N, with its center at 
39°54′20″ N and 116°25′29″ E, covering a total area of 16,410 square kilometers. It is adjacent to 
Tianjin and surrounded by Hebei Province and Tianjin. For 30 years, both the urbanization of 
Beijing and the influx of migrants have been accelerating. Before the mode of development 
changed from “population influx” to “population outflux,” the land area in Beijing devoted to 
construction had been increasing year by year. To simulate Beijing’s size, we use the data from 
the first geographic national conditions and special monitoring of Beijing in 2015. The specific 
data include:
(1)	Raster data: Grade Map Data of Beijing in 2015.
(2)	�Vector data: Data on construction land in Beijing in 2007, 2011, and 2015; data on road 

networks in Beijing (including urban roads, expressways, and railway networks); data on the 
water system (including threadlike rivers, flat-faced lakes, and reservoirs); all levels of the 
data on the urban center; and data on protected areas with restricted development.

3.	 Methods

3.1	 Geographical simulation

	 To compensate for deficiencies in the current modeling of geographical information systems, 
geographical simulation systems have emerged. Their core lies in the establishment of 
geographical models, and simulation and prediction of complex geographical phenomena are 
carried out through simulations and other research methods.(4,5) Key technologies of a 
geographical simulation system include CA and multi-agents. Among these, the cellular 
automata method is widely used in the modeling of land use and coverage changes due to its high 
efficiency and simple assumptions. CA is based on the interaction among the cells in local 
neighborhoods on the grid system, which simulates complex spatial phenomena. Newly 
generated cell properties are derived from the cells of the previous moment through certain rules 
of evolution. This bottom-up feature is consistent with the characteristics of urban scale 
evolution. Therefore, cellular automata are widely used in simulations of urban scale. For 
example, Li and Ye (2002) studied the expansion of urban land in Dongguan City with good 
results by combining artificial neural networks and other technical methods in the modeling.(6–12)

	 A significant disadvantage of the CA approach is that it does not introduce spatial elements 
and driving forces in the simulation of land use and changes in coverage. To compensate for this 
shortcoming, some researchers have improved the scientific nature of logical decision-making 
by combining CA with empirical statistical models, including an ordinary least-squares 
regression (OLs) model, a spatial autoregressive model, an analytic hierarchy model, a logistic 
regression model, and a hierarchical multiple regression model. However, as parametric models, 
these empirical methods also have some drawbacks:
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(1)	�They rely too much on prior knowledge, but there is no consistent and comprehensive 
knowledge about the processes of land use and changes in coverage. 

(2)	�They cannot process multi-channel data or identify nonlinear correlations. On the other hand, 
land use and changes in coverage are affected by a series of complex and nonlinear factors.

(3)	�They cannot process high-dimensional data, which may lead to over-fitting. The existence of 
these drawbacks greatly reduces the versatility of the models when using the empirical 
statistical models for out-of-sample prediction. Therefore, it is necessary to find a more 
reliable and accurate method to replace CA based on the empirical statistical models.(13,14)

	 Machine learning techniques (such as neural networks, decision trees, random forests, and 
support vector machines) offer new possibilities for modeling land use and coverage on different 
geographical scales. Machine learning techniques have the following advantages over empirical 
statistics:
(1)	�Stronger processing power for quantitative and qualitative high-dimensional data;
(2)	Computational efficiency to avoid overfitting;
(3)	�No need for strict parameter assumptions to make the description of the data more accurate 

and reliable;
(4)	No strong assumptions are required, and nonlinear features can be processed.
	 Because of these advantages, some groundbreaking researchers have tried to improve cellular 
automata by combining different machine learning methods,(15,16) but it is often difficult to 
choose the “optimal” machine learning algorithm. In addition, there has not been any research 
up to now on the systematic simulation of urban scale by combining cellular automata and 
machine learning techniques. 

3.2	 EL

	 As an integrated approach, EL methods train multiple machine learning algorithms and 
integrate their estimates to improve overall numerical prediction or classification accuracy. In 
general, EL algorithms are superior to single machine learning algorithms because errors change 
with different machine learning algorithms, but the combination of different machine learning 
algorithms makes the results more accurate. Typical methods of EL are divided into two types: 
bagging algorithms and stacking algorithms.(17–23)

	 The bagging algorithm is a technique to reduce generalization error by combining several 
models. The main idea is to train several different models, and then let all models vote on the 
output of test samples. This is an example of conventional strategies in machine learning, also 
known as model averaging. The bagging algorithm is characterized by training each algorithm 
in the machine learning algorithm with different subsets of training data, which can effectively 
reduce the sensitivity of the machine learning algorithm, avoid the occurrence of over-fitting, 
and improve the overall generalization ability. Specifically, n times of repetitive sampling of 
variables in the original training samples are first carried out by random sampling to generate n 
new sample sets. With these new sample sets, m machine learning algorithms are trained 
separately. Then, the same variables are used as input to these algorithms to obtain m prediction 
values, and the bagging algorithm finally obtains the integrated output results of the m prediction 
values by simple voting or averaging methods. 
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	 The stacking algorithm is also called the superposition method. First, m machine learning 
algorithms are trained with the existing training sample sets. Second, the output values of the m 
algorithms are used as training samples, and the actual value of the variable is taken as the true 
value. Finally, the original machine learning algorithm is superimposed onto a new machine 
learning algorithm through a new training dataset. In the superposition method, the outputs of 
the previous machine learning algorithm are applied to the induction process of the subsequent 
algorithm, so that the new machine learning algorithm can identify and correct the errors of the 
original machine learning algorithm, find the best ensemble method of the machine learning 
algorithms, and improve the accuracy of learning.

3.3	 CA based on self-adaptive EL

	 We selected five machine learning algorithms commonly used in combination with cellular 
automata to simulate land use and changes in coverage: support vector machine (SVM), radial 
basis function neural network (RBF-NN), random forests (RFs), boosted tree regression (BTR), 
and rough sets (RSs). 
	 SVM is a generalized linear classifier that carries out binary classification of data according 
to supervised learning. Its decision boundary is the maximum distance hyperplane for learning 
samples. Finding a hyperplane (segmentation line) to segment the sample segmentation 
maximizes the interval.
	 RBF-NN is an artificial neural network that uses a radial basis function as the activation 
function. It is a three-layer forward network including an input layer, a hidden layer, and an 
output layer. The transformation from input space to hidden space is nonlinear, while the 
transformation from hidden space to output space is linear.
	 RFs refers to a classifier that uses multiple trees to train and predict samples. In fact, it is a 
special bagging method, which uses the decision tree as the model in bagging.
	 BTR is a lifting method based on classification trees and regression trees. The decision tree is 
a binary classification tree for classification problems and a binary regression tree for regression 
problems.
	 RSs is a mathematical tool for the quantitative analysis and treatment of imprecise, 
inconsistent, and incomplete information and knowledge. It is a two-dimensional table that uses 
information tables to describe objects in the universe. Each row represents an object, and each 
column represents an attribute of the object. The degree of imprecision is described by the 
concepts of lower approximation and upper approximation.
	 On the basis of the data from monitoring Beijing’s national geographical conditions in 2007, 
2011, and 2015, we extracted the predictive factors of urban construction land and urban scale 
evolution in Beijing. The predictive factors can be divided into auxiliary factors and control 
factors, among which the auxiliary factor data includes distance factors (distance from road – 
subdivided into distance from railway, highway, and expressway), distance from city (town) 
center, distance to satellite center, distance to rivers, lakes or water systems, and topographic 
factors (slope data). In view of the many cultural relics and historical protected areas in Beijing, 
we selected protective areas with restricted development as the limiting factors. The predictive 
factors and their sources are shown in Table 1.
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Table 1 
Predictive factors and their sources.
Predictive Factors Category Source

Auxiliary Factors

Distance Factors Distance raster data calculated from vector data such as Beijing 
road network, water system, and town center. 

Topographic Factors Slope raster data calculated from Beijing DEM data.

Other Factors Other influencing factors based on the results of the census of 
the geographical conditions of Beijing.

Limiting Factors Protective Areas with 
Restricted Development

Converting vector data of the restricted development zones to 
raster data.

	 After converting the vector data for Beijing’s urban construction land in 2007, 2011, and 2015 
into raster data, the CA model based on the five machine learning algorithms described was 
trained using the self-adaptive approach, and the city scale of Beijing in 2023 was predicted. The 
data for the first two years were used for model training, the data for the third year were used for 
adjustment and calibration, and randomness was reduced by repeating 10-fold cross-validations 
ten times. Specifically, the training dataset was divided into ten subsets, nine of which were used 
for training, and the last one was used for testing. Then the bagging algorithm and the stacking 
algorithm were used to generate a new CA model based on EL. These five machine learning 
algorithms can generate many new superposition algorithms, which can use the Wilcoxon 
signed-rank test to compare the saliency of the differences shown by different superposition 
combinations and can adopt the superposition combination with the least number of algorithms 
and the highest prediction accuracy as the final simulation method. The cellular automata model 
algorithm was trained with real data from multiple years and was verified and calibrated with 
one of the years. Randomness was reduced by repeated training and cross validation. Finally, the 
combination with the highest predictive accuracy was found by the superposition of different 
algorithms.
	 In this study, 240 sets of randomly selected samples were used to calculate the predictive 
accuracy, and the best CA model based on EL was selected. To judge if the model were relatively 
better than the traditional CA method based on the empirical statistical model, we further 
compared the accuracy of the two predictions.

4.	 Results 

4.1	 Comparison of EL methods and empirical statistical methods

	 We used various model methods to predict construction land in Beijing in 2015 and compare 
it with the actual situation in 2015, as shown in Table 2. From the predictions, it can be seen that 
the accuracy of the machine learning algorithm was higher than that of the empirical statistical 
model algorithm. At the same time, we also show the accuracy of predictions from the bagging 
algorithm and stacking algorithm. The accuracy of each machine learning algorithm was 
significantly improved after being combined with the bagging algorithm, but it was still not as 
good as that of the stacking algorithm. Among the methods listed, the highest predictive 
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Table 2 
Prediction by each model (%).

Original Model Prediction 
Accuracy 

Bagging 
Algorithm

Prediction 
Accuracy 

Stacking 
Algorithm

Prediction 
Accuracy 

SVM 69.1 SVM 77.5 SVM + RSs 81.1

RBF-NN 65.5 RBF-NN 72.9 SVM + RSs + 
RBF-NN 84.7

RFs 63.2 RFs 70.5 SVM + RSs + 
RBF-NN + RFs 74.3

BTR 60.1 BTR 68.4
SVM + RSs + 

RBF-NN + RFs + 
BTR

73.9

RSs 68.0 RSs 75.9
OLs 48.4
SAR 56.7
SAR: spatial auto regression 

accuracy was achieved when the stacking algorithm superimposed the SVM, rough set, and 
RBF-NN, for which the prediction accuracy reached 84.7%.

4.2	 Predicted Results 

	 The land use for buildings in Beijing in 2007 and 2015 is shown in Fig. 1. Combining this 
with the results from the predictive models, we selected three algorithms to be superposed upon 
the stacking algorithms, namely, SVM, RSs, and RBF-NN. On the basis of the data for Beijing’s 
construction land in 2007 and 2015, the urban construction land was predicted for 2023. The 
comparison of the construction land between the predicted results for 2015 and 2023 is shown in 
Fig. 2. 
	 From the perspective of spatial distribution, the overall extent of construction land in Beijing 
has not increased significantly. The internal distribution tends to be dense, while the overall 
contour is unchanged. The newly added construction land is mainly distributed on the edge of 
existing construction land. After excluding the influence of random points, there is no obvious 
new point within the fourth ring road of Beijing, which shows that construction land in the 
downtown area of Beijing has become saturated. New sites are primarily concentrated outside 
the fourth and fifth ring roads, such as on the south side of the Tongzhou District, the Daxing 
District, and the Fangshan District, and the southwest side of the Pinggu District, all of which 
are close to Tianjin City and Hebei Province, as the key areas for relieving Beijing of functions 
nonessential to its role as the capital. The construction land of the Huairou District, the 
Changping District, the Mentougou District, and the Fangshan District remains mainly 
unchanged, which may be related to steep slopes of these areas and a large number of areas in 
which development was prohibited.
	 Urban construction land predicted in 2007, 2015, and 2023 was converted into raster data 
with a cell size of 30 × 30. From the absolute value of the change in the area, there were 267539 
newly added pixels in 2015 as compared to 2007, and 259854 predicted newly added pixels in 
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Fig. 1.	 (Color) Urban construction land in Beijing in (a) 2007 and (b) 2015.

Fig. 2.	 (Color) Comparison of predicted results with actual urban construction land in 2015.

(b)(a)

2023 compared to 2015. The results show that, if policy and other factors remain unchanged, the 
growth rate of construction land in Beijing decreased with the increase in area, which also 
indicates that construction land in Beijing is close to saturation due to slower growth in the 
overcrowded city. In the future of urban construction and planning, Beijing should strictly 
control the quantity of new construction land, improve road traffic conditions in the city, 
alleviate the uneven distribution of population, and protect the environment.
	 On the basis of the results from data on urban construction land in 2007, 2011, and 2015 in the 
general survey of geographical conditions, we verify the use of remote sensing technology in the 
general survey of geographical conditions and that it provides support for decision makers on 
urban planning. Remote sensing technology not only greatly improves the speed of the census of 
geographical conditions but also improves the accuracy of the census.
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5.	 Conclusions

	 To study the evolution of Beijing’s urban scale and provide decision support for Beijing’s 
policy of alleviating non-capital functions and promoting the coordinated development of 
Beijing, Tianjin, and the Hebei Region, we summarized the experiences of predecessors using 
CA to simulate the urban scale, analyzed the advantages and disadvantages of various methods, 
and emphasized a CA model based on a machine learning algorithm and EL. Through the 
examples in this paper, we verified that the method proposed is much better than the traditional 
modeling method based on empirical statistics in terms of the predictive accuracy of urban scale 
simulation.
	 On the basis of the survey data of Beijing’s geographical conditions in 2007 and 2011 as the 
input data, the 2015 predicted value was obtained. Comparing it with the actual value in 2015, 
we selected the CA model with the highest predictive accuracy; it consisted of a stacking 
algorithm superimposing SVM, RSs, and RBF-NN. Finally, the distance factor, slope factor, 
limiting factor, and other factors were provided as input. According to the data of Beijing’s 
construction land in 2007 and 2015, the scale of construction land in Beijing in 2023 was 
predicted under the condition of unchangeable external factors, and the city scale of Beijing was 
analyzed.
	 The results show that the overall contour of Beijing’s construction land is basically 
unchanged, the internal agglomeration point tends to be dense, the overall construction land 
tends to be saturated, and the growth rate of land area has slowed. To achieve orderly and 
sustainable urban development, the government needs to relieve Beijing of functions nonessential 
to its role as the capital. In addition to the central urban area, key control areas for future 
construction land include the south side of the Tongzhou District, the Daxing District, and the 
Fangshan District, and the southwest side of the Pinggu District, all of which are close to Tianjin 
and Hebei Province.
	 The experimental results in this paper fully demonstrate the flexibility and predictive 
accuracy of the CA model based on the EL method in urban scale simulation, but there are also 
deficiencies. In addition to the impact of the extracted impact factors from the monitoring of 
national geographical conditions, the city scale is also affected to a certain extent by policy 
formulation and other aspects. To further improve the accuracy of urban prediction, further 
information needs to be obtained to provide more accurate references for decision makers.
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