
643Sensors and Materials, Vol. 35, No. 2 (2023) 643–656
MYU Tokyo

S & M 3200

*Corresponding author: e-mail: bogangy@126.com
https://doi.org/10.18494/SAM4212

ISSN 0914-4935 © MYU K.K.
https://myukk.org/

A Rapid Extraction Method for Information on Complex Urban 
Land Cover Based on Oblique Photogrammetric Data

Cai Cai,1,2,3 Yingchun Tao,1,2,3 Xiya Zhang,4 
Xiaojuan Xing,1,2,3 and Bogang Yang1,2,3*

1Beijing Institute of Surveying and Mapping, No. 15 Yangfangdian Road, Haidian District, Beijing 100038, China
2Beijing Key Laboratory of Urban Spatial Information Engineering, Beijing 100038, China

3Analysis and Application of Urban Big Data in Bogang Yang Staff Innovation Studio, Beijing 100038, China
4Institute of Urban Meteorology, China Meteorological Administration, 

No. 55 Beiwaxili, Haidian District, Beijing 100089, China

(Received October 30, 2022; accepted January 23, 2023)

Keywords: rapid extraction, aerial photogrammetry, land cover, complex urban area, multi-level, 
orthophoto

 With the development of sensors like digital aerial cameras and remote sensing and 
photogrammetry technologies, such as oblique photography and three-dimensional technology, 
higher resolution and richer data are available for urban land cover extraction, including digital 
orthophoto maps (DOMs), true digital orthophoto maps (TDOMs), and topographic information.  
On the basis of highly overlapped oblique photogrammetry, the output of TDOM can solve most 
of the occlusion problems caused by illumination and observation angles. Making full use of 
spatial information, especially height, may reduce spectral confusions among urban land covers 
due to limited spectral resolution in RGB images. We acquired and processed information from 
TDOM and height data based on aerial sensors and oblique photogrammetry and used a multi-
level threshold method combining the vegetation color index, brightness, spatial information, 
and height to rapidly extract urban land cover information. The method offers a simple and 
effective way to automatically extract complex land cover information on megacities with no 
need for training sample selection. This method was evaluated by comparing its results from the 
area of Beijing with those from the most widely used support vector machine (SVM) and 
maximum likelihood classification methods through visual inspection and quantitative 
measures, and this method achieved a better accuracy.

1. Introduction

 Urban land cover information and changes in it are of great importance to the urban 
ecological environment(1) and for urban planning and management.(2,3) With the acquisition of a 
large number of high-resolution images from satellite and airborne sensors,(4) the rich spatial 
information available provides a great opportunity for the automatic and efficient extraction of 
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urban land cover information and the changes in that information over time.(5) The use of high-
resolution images for urban land cover mapping and detection of changes has attracted 
widespread interest and is an area of intense research interest in the field of remote sensing.(6–8)

 Urban land cover information primarily includes the following categories: buildings, water 
bodies, vegetation (such as trees and grasslands), bare land, and impervious surfaces (e.g., roads, 
parking lots, and other paved areas). Buildings may contain different materials, be of different 
shapes, have different colors, and may even have green roofs covered by vegetation. Owing to 
the complexity of urban land cover types, for which large spectral differences between the same 
land cover types and the high spectral similarity of different land cover types are observed, 
spectral resolution from very high resolution (VHR) images (like RGB aerial images) is limited, 
and occlusion problems caused by illumination and observation angles arise.(8)  Thus, it can be 
difficult to accurately and automatically extract complex urban land cover information using 
only spectral information of VHR images(9–11) To fully use the spatial information of VHR 
images, object-oriented classification methods and image texture assessments have been widely 
used.(7–9) However, the problems of occlusion and confusion are still difficult to solve.
 With the development of photogrammetry technologies, such as oblique photography and 
three-dimensional technology,(12) digital orthophoto maps (DOMs), true digital orthophoto map 
(TDOMs), and topographic information such as digital surface models (DSMs) and digital 
elevation model (DEMs)(13) can be obtained. By taking the height of objects into account, TDOM 
theoretically can completely correct geometric distortion and solve the problem of occlusion. 
TDOM has now proven to be a mature product and has been widely used(14) in urban construction 
and management. In addition to reducing the problems of spectral confusion, the acquisition of 
DSMs and DEMs provides important supplementary information for the extraction of structures 
like buildings.(1,5,11)

 Supervised classification methods such as support vector machines (SVMs) have been widely 
applied to extract land cover information, but they cannot work without training samples. We 
acquired TDOM and height information and processed it based on aerial photogrammetry for 
urban land cover information extraction. After analyzing land cover characteristics in complex 
urban areas from photogrammetric data, we propose a multi-level threshold method to gradually 
extract different land cover categories based on the vegetation color index, brightness, spatial 
information, and height. This method offers a simple and effective way for the automatic 
extraction of complex land cover information in megacities.

2. Study Area 

 The study area was the central urban area of Beijing, China. This area is a fully urbanized 
area with the highest development intensity in the city of Beijing, which is very complex and 
contains diverse land covers, including areas with high buildings, low-rise cottage areas, green-
roofs covered by vegetation, different colored roofs, water bodies, trees, grass, bare land, roads, 
parking lots, and other land covers. 
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Fig. 1. Procedure of urban land cover information extraction described in this study.

3. Materials and Methods

 We first used photogrammetric methods to obtain DSM, DEM, and TDOM data. Then by 
analyzing urban land cover characteristics, a method combing spectral and spatial information, 
especially height, we proposed to quickly extract the surface cover information of complex 
urban areas. Figure 1 shows the entire procedure of the proposed method.
 Comprehensive response characteristics of typical urban land cover types in high-resolution 
aerial photogrammetric data were evaluated, including features of geometry, spectral data, 
texture, and height. Three types of information, i.e., height, vegetation color index, and height 
texture, could be easily and quickly obtained, even for the very high resolution images which 
contained large volumes of data. Because some buildings and trees had similar heights, it was 
difficult to obtain reliable building extraction results using height thresholds directly. To make 
full use of the spatial information in VHR images, the height was calculated using image 
segmentation and image texture methods to obtain the segmented object and height texture 
information. Then, we applied a multi-level threshold method by combining the vegetation color 
index, brightness, spatial information, and height and used it to extract water bodies, vegetation, 
buildings, pervious surfaces (e.g., bare land), and impervious surfaces. Finally, the results of 
each category were combined, and a result detailing the urban land cover information was 
generated. 
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3.1 TDOM and height information processing by aerial photogrammetry

 Compared with a DOM, a TDOM is generally produced by replacing a DEM with a DSM. 
Digital differential correction technology is used to correct geometric distortions in the original 
image. After resampling the entire survey area, the visual angle of the image is corrected to the 
vertical visual angle. In practical applications, problems such as DSM acquisition and occlusion 
information compensation arise. A DSM can be obtained through dense matching or airborne 
laser detection and ranging (LiDAR) scanning, for which dense matching technology has 
become a popular method to obtain high-precision DSMs, which then may be used to solve 
problems of relative occlusion in multi-view image matching. The processing flow of TDOM 
and terrain data usually includes geometric corrections and joint adjustments of regional 
networks, multi-view image dense matching, DSM generation, and real orthophoto correction.
 We acquired TDOM, DSM, and DEM data by the semi-global matching (SGM) method(15) 
from aerial oblique photogrammetry. The TDOMs had three bands of red, green, and blue, with 
a spatial resolution of 0.5 m. It is worth noting that TDOM, DSM, and DEM data obtained by 
other sensors or methods, such as the use of unmanned aerial vehicles (UAVs), stereoscopic 
satellite data, high overlap aerial data, and height information based on LiDAR or even DOM 
were also used. Normalized DSM (nDSM), which represents height information, was obtained 
by calculating the difference between DSMs and DEMs. An nDSM reflects the true height of 
surface features after the topographic undulation factor is removed. 

3.2 Feature selection

3.2.1 Vegetation color index

 Vegetation indices [e.g., normalized vegetation index (NDVI)] have been proven fast and 
effective for the rapid and automatic extraction of large-area green coverage.(16) However, 
because most geometrically corrected aerial photographs, UAV images, or processed satellite 
photographs only retain the three bands of red, green, and blue and lack the commonly used 
near-infrared bands, the vegetation color index was used in this study. Currently, the widely used 
vegetation color indices include the green leaf index (GLI),(17) the normalized green-red 
difference index (NGRDI),(18) the green chromatic coordinate (GCC), and the excess green 
minus excess red index (ExG-ExR).(19–21) 
 Through the experimental comparison of these vegetation color indices including GLI, 
NGRDI, GCC, and ExG-ExR (Fig. 2), the difference between vegetation and non-vegetation 
[especially cool colored roofs shown in blue in Fig. 2(a)] was more significant in the GLI results 
[Fig. 2(b)], which are better for extracting vegetation. Therefore, the GLI was used in this study, 
the calculation of which is shown in Eq. (1):

 ( ) ( )2      / 2     ,GLI G R B G R B= − − + +  (1)

where R, G, and B indicate the values of the red, green, and blue bands, respectively.
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Fig. 2. (Color online) Part of TDOM of (a) the study area and (b)–(e) the comparison of the indices of the 
vegetation color results. The vegetation area has a higher index value, which appears bright, while the non-vegetation 
area has lower index value and appears dark. (a) TDOM. (b) GLI. (c) NGRDI. (d) ExG-ExR. (e) GCC.

 A threshold of 0.1 for the GLI value was set to extract vegetation. If the index value was 
larger than 0.1, the area was classified as vegetation; otherwise, it was classified as non-
vegetation.

3.2.2 Image segmentation method

 Image segmentation is a prerequisite to object-based image analysis methods. The watershed 
transform-based image segmentation method has been commonly used; however, existing 
watershed transformation algorithms are very sensitive to noise and prone to produce over-
segmentation. A region merging method has proven useful to optimize initial segmentation 
results.(22) We adopted a method based on watershed transformation and hierarchical region 
merging.(22) A multichannel watershed transformation method(23) was first used to produce an 
initial segmentation result. Neighboring segments with similar spectral features were then 
merged by comparing the average spectral vectors of neighboring segments to reduce the 
problem of over-segmentation. It is worth noting that other multiscale segmentation algorithms, 
such as the multiscale segmentation of e-Cognition software, are also suitable.

3.2.3 Image texture

 Generally, different urban land cover types have different textural characteristics. For 
example, artificial land covers (e.g., buildings) generally vary evenly at the top of the ground 
features (except boundaries), while vegetation, especially trees, have many variations from the 
top, which appear more obvious in the texture. Therefore, image texture information can be used 
to assist land cover classification. We applied a widely used multivariate function to extract the 
texture of the height information, and the spectral angular distance was used for calculation. The 
minimum value of the texture in each direction was adopted to reduce the influence of the edge 
effect, which exists in omnidirectional textures.

3.2.4 Urban land cover characteristics

 Comprehensive response characteristics of typical urban land cover types in VHR aerial 
images were studied, including features of the geometry, spectra, texture, and height. The height 

(a) (b) (c) (d) (e)
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Fig. 3. (Color online) Urban land cover characteristics: (a) a part of a TDOM (resampled to 1 m), (b) false color 
composite map (R: height; G: GLI; B: height texture), and (c) an example of the green mesh covering on bare soil; the 
area shown is indicated by the red circle in (a).

information mainly highlights buildings and trees and can effectively reflect the difference 
between buildings and other impervious surfaces with the same spectral characteristics. The 
vegetation color index (e.g., GLI) can highlight areas of green vegetation. To diminish the 
confusion between green color roofs and trees, texture information can be helpful. 
 A part of the height, GLI, and height texture data from the study area is shown in Fig. 3. The 
different land cover types in this area can be clearly discerned. For example, most buildings have 
relatively high height values and low height texture data values; therefore, buildings show a 
reddish color in the false color composite map [Fig. 3(b)], and the boundaries are clear. With 
height information, buildings could be distinguished from other impervious surfaces (e.g., 
roads). Vegetation has relatively high GLI values, and the height of the grassland areas is 
normally low while trees have higher values. In addition, trees have relatively higher height 
texture data values than grasslands. Water bodies have relatively low heights and normally 
smooth textures. Because water bodies in urban areas have a high degree of eutrophication, they 
have relatively high GLI values [shown in green in Fig. 3(b)]. The impervious ground (e.g., 
roads) and pervious ground (e.g., bare soil) have similar low height data values and height texture 
data values. However, owing to urban management requirements, most bare land in the study 
area is covered with green mesh [Fig. 3(c)], which shows relatively high GLI values similar to 
grassland.
 In addition, by comparing the image spectra of different types of land cover, we found that 
artificial land covers such as buildings and other impervious surfaces generally have relatively 
high band values (brightness), while natural land covers such as vegetation and water bodies 
generally have relatively low band values. Thus, the average value of all image bands was used 
as the brightness to characterize the comprehensive spectral reflectance, which is defined as 
BRI:

 ( )  / 3,BRI R G B= + +  (2)

where R, G, and B indicate the values of the red, green, and blue bands, respectively.

(a) (b) (c)
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3.3 Rapid extraction of urban land cover combining spectral and height information

 By analyzing the characteristics of different land cover types, the vegetation color index that 
highlights information on the vegetation, the height data for distinguishing buildings, trees, and 
the ground surface, texture information for further classifying trees and buildings, and 
brightness information were generated. Image segmentation was then conducted in regards to 
height data to reduce height noise and make full use of the spatial information. According to 
height segments, the mean and mode values of height, GLI, and height texture were calculated 
for each object. A multi-level threshold method combining spectral and height information was 
used to extract water bodies, vegetation, buildings, pervious surfaces (e.g., bare land), and 
impervious surfaces.
(1) Water extraction method
 As analyzed in Sect. 3.2.4, a body of water has relatively low height, height texture, and BRI 
values, along with certain GLI values. The thresholds of GLI, BRI, height, and height texture 
were generated and used to extract water bodies. 
(2) Vegetation extraction method based on brightness correction
 GLI can highlight vegetation information to a large extent, but owing to the lack of more 
effective near-infrared bands, some information on surfaces that are not vegetation would be 
confused with vegetation, such as some green roofs and green ground (e.g., fake turf) in cities. A 
cold-colored roof has a certain height, but its texture is relatively smooth, while trees have high 
texture values because of shadows and low BRI values as described in Sect. 3.2.4. Thus, a BRI 
threshold was generated to remove those mixed non-vegetation areas from the initial results of 
vegetation extraction from GLI. In addition, we set the height threshold to distinguish between 
trees and grasslands. 
(3) Building extraction method based on a hierarchical strategy
 We used a hierarchical strategy to gradually extract buildings, and subtle differences in the 
features of ground objects at different heights were fully utilized to select appropriate thresholds 
to obtain better results. Considering the spectral heterogeneity of VHR images, object-oriented 
and mode threshold methods were used for extraction. For each segmented height object, if a 
certain number of pixels were marked as a building, the object was classified as building. 
 The stratification and threshold values were selected according to the characteristics of 
buildings at different heights. Most ground can be eliminated by setting a threshold of a height of 
2 m, because most buildings are higher than that. According to the features of buildings in the 
study area, three height layers were generated on the basis of the object-oriented average height 
data to extract buildings separately; the layers consisted of low-rise buildings (less than 2 floors), 
medium-height buildings (2–6 floors), and high-rise buildings (more than 6 floors). Because 
trees may have heights similar to low-rise buildings and to some medium-height buildings, trees 
were removed on the basis of previous results of vegetation extraction to obtain initial extraction 
results for buildings. However, some buildings with green roof gardens covered by vegetation 
may thereby be omitted. Generally, green roof gardens have relatively small variations in height, 
so the thresholds of height texture and the GLI of each object were carefully selected to separate 
trees and green roof gardens. Finally, the hierarchical extraction results were combined to obtain 
the final results of building extraction.
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 Other impervious surfaces and bare land were obtained by further threshold classification of 
the ground surface. By combining these results with the extraction results for water bodies, 
vegetation, and buildings, the final results of land cover information extraction result were 
obtained.

3.4 Methods of evaluating results 

(1) Accuracy assessment
 Buildings are the key type of land cover; therefore, building extraction and land cover 
extraction results were both visually and quantitatively evaluated. Widely used evaluation 
indicators including overall accuracy (OA), kappa coefficient, producer’s accuracy (PA), and 
user’s accuracy (UA) were adopted in this study.
 According to the existing data, for the assessment of the accuracy of building extraction, a 
reference map of buildings that were manually collected from a 3D mesh model was used along 
with 800 testing samples selected by a stratified random method for the quantitative evaluation 
of land cover extraction. 
(2) Comparison of results 
 To further verify the accuracy of the proposed method, we applied widely used methods for 
comparison, including the direct threshold method, the SVM classification method, and the 
maximum likelihood classification method. All methods were applied to the four-band images 
formed by the fusion of TDOM and height information. The training samples used in the SVM 
method and the maximum likelihood method were the same, and the testing samples used in all 
methods were the same.

4. Results and Discussion

4.1 Building extraction results and comparative validation

 The results of building extraction using different methods are shown in Fig. 4. Compared 
with the reference map of buildings [Fig. 4(b)], our method [Fig. 4(c)] extracted most buildings, 
and the building patches were smooth and relatively complete. Green roof gardens and cold-
colored roofs were extracted appropriately. The result using the direct threshold method 
[Fig. 4(d)], which is directly using thresholds of height and GLI, shows salt and pepper noise, and 
more misclassifications were made. The SVM results show less noise, were smoother, and had 
fewer misclassifications, but some omissions were still noted. The results of the maximum 
likelihood classification method showed some noise and some misclassifications, but they were 
better than the results of the direct threshold method.
 Table 1 shows the results of the accuracy of the building extraction carried out using different 
methods. The overall accuracy and the kappa coefficient, which are 91.76% and 0.79, 
respectively, are both the highest for the results of the method proposed herein. 
 It is worth noting that both the SVM method and the maximum likelihood method require the 
manual collection of a large number of samples; thus, the manual workload is large, while the 
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 Fig. 4. (Color online) Building extraction results (in purple) using different methods. (a) Part of the TDOM 
(resampled to 1m). (b) Building reference. (c) Extraction result of the proposed method. (d) Extraction result of the 
threshold method. (e) SVM classification result. (f) Maximum likelihood classification result.

(a) (b)

(c) (d)

(e) (f)

overall efficiency is lower than that of the proposed method. In summary, the evaluation of the 
results shows that, compared with other methods, the proposed method can achieve higher 
accuracy in building extraction. 
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Fig. 5. (Color online) Extraction results of urban land cover information using different methods. (a) Extraction 
result of the proposed method. (b) Maximum likelihood classification result (spectral image only). (c) SVM 
classification result (spectral and height data). (d) Maximum likelihood classification result (spectral and height 
data).

Table 1 
Comparison of the accuracy of building extraction by different methods.

Overall accuracy 
(%)

Kappa 
coefficient

Building extraction
Producer’s 

accuracy (%)
User’s 

accuracy (%)
Result of the proposed method 91.76 0.79 85.64 84.45
Result of the threshold method 87.69 0.71 88.32 72.61
SVM classification result 89.19 0.70 65.80 92.48
Maximum likelihood classification result 89.83 0.75 82.08 80.98

4.2 Results and comparative evaluation of urban land cover information extraction 

 The results of land cover extraction by different methods are shown in Fig. 5. To further 
verify the accuracy of the proposed method, we compared the extraction results with the 

(a) (b)

(c) (d)
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Table 2 
Comparison of the land cover information extraction accuracy by different methods.

Results from the 
proposed method 

 Maximum 
likelihood 

classification 
results (spectral 

images only)

 SVM 
classification 

results (spectral 
and height)

 Maximum 
likelihood 

classification 
results (spectral 

and height)

Buildings

Producer s̓ 
accuracy (%) 91.47 36.68 80.84 93.39

User s̓ 
accuracy (%) 93.83 62.58 99.62 92.84

Water bodies

Producer s̓ 
accuracy (%) 99.99 84.35 98.24 57.46

User s̓ 
accuracy (%) 100.00 91.29 76.85 94.25

Vegetation

Producer s̓ 
accuracy (%) 86.92 93.32 94.25 98.41

User s̓ 
accuracy (%) 99.13 72.84 96.79 53.91

Other impervious 
surfaces

Producer s̓ 
accuracy (%) 96.70 79.79 62.17 78.81

User s̓ 
accuracy (%) 61.67 58.65 80.92 83.83

Bare land

Producer s̓ 
accuracy (%) 41.33 57.36 81.95 78.44

User s̓ 
accuracy (%) 96.73 46.20 61.57 76.40

Overall accuracy 84.99 64.32 81.77 81.20
Kappa coefficient 0.81 0.55 0.77 0.76
Note: The buildings herein were evaluated with other land cover types by testing samples, rather than by the building 
reference map shown in Sect. 4.1; therefore, the accuracy values are different from those in Table 1.

maximum likelihood classifications based on spectral images alone [Fig. 5(b)], as well as the 
SVM classification [Fig. 5(c)] and maximum likelihood classification [Fig. 5(d)] based on the 
fusion of spectral information and height information. The training samples used in the SVM 
method and the maximum likelihood method were the same, and the testing samples used in all 
methods were identical. 
 Visually, the result of the proposed method [Fig. 5(a)] shows fewer classification errors, and 
the appearances of different land cover types are relatively complete and smooth. The rest of the 
results show water-related misclassifications, which are due to shadows, especially in the results 
of SVM classifications. The results based on the maximum likelihood classification of four-band 
images based on spectral information and height information also show a salt and pepper 
pattern, and some misclassifications occurred. Bare land extraction results by all methods are 
not as good, because those classifications have always been a difficult problem, even with more 
spectral bands. 
 Table 2 shows the accuracy of the extraction of land cover information by different methods. 
The accuracy of the proposed method is 84.99%, and the kappa coefficient is 0.81. The extraction 
accuracies for water, vegetation, and buildings are relatively high, which is consistent with the 
results of visual evaluations. For height information, the extraction accuracy is improved in 
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comparison with the result from the maximum likelihood classification method using spectral 
images only and that using spectral and height data.
 In summary, from the perspective of visual evaluation and accuracy assessment, the proposed 
method can effectively extract land cover information in complex urban areas, especially for 
buildings, vegetation, and water bodies. The extraction of information on urban bare land has 
always been a difficult problem, even when more spectral bands are used in the analysis. Height 
information proved quite useful for land cover information extraction in complex urban areas.

5. Conclusions

 Realizing the issues of low spectral resolution, ultrahigh spatial resolution, large amounts of 
data, no geometric distortion and displacement, little occlusion, and the ability to obtain 
topographic data at the same time as urban aerial remote sensing imagery, we studied a rapid 
extraction method of land cover information in complex urban areas by combining spectral and 
spatial data and height information. Using a comprehensive analysis of typical land cover 
characteristics, height, vegetation color index, height texture, and brightness, we developed a 
multi-level threshold method. Incorporating visual observations and accuracy evaluations of the 
experimental results as well as comparisons with the direct threshold method, SVM 
classification, and the maximum likelihood classification, we established the effectiveness of the 
method proposed. Without requiring the selection of training samples, the method offers a 
simple and efficient procedure for the automatic extraction of complex land cover information in 
megacities. This method is also applicable to other images from satellite and airborne sensors, 
such as UAV images, satellite images, and LiDAR data.
 It is worth noting that with the development of photogrammetry and remote sensing pixel-
level matching technology, especially with the engineering application of SGM technology, and 
through connection point matching, aerial triangulation, image control point measurements, and 
SGM matching of traditional digital aerial and satellite images, pixel level DSM and TDOM 
results with accuracy as high as those from oblique photogrammetry were obtained. Hence, the 
method described in this study has prospects for broad applications.
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