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 It is important that indoor autonomous mobile platforms have the capability of localization in 
general indoor environments. In this study, using multi-threaded vehicle-mounted light detection 
and ranging (LiDAR), we conducted indoor autonomous mobile platform localization 
experiments based on a point cloud conversion 2D image method with an interpolated probability 
distribution, performed a scan matching analysis by converting 2D images based on an 
interpolated probability distribution while using occupied grid maps, and introduced a multi-
resolution map method to avoid falling into a local optimum. We found that the method adopted 
in this study achieves a higher indoor positioning accuracy and a higher matching speed with 
reduced computational effort while avoiding local optima. Compared with other traditional 
indoor positioning methods, this method has the advantages of universal applicability and 
robustness against signal interference and other problems.

1. Introduction

 Owing to the application and development of technologies based on user location information, 
positioning technology has become widely used in production and life. However, in indoor 
environments, such as underground parking lots and indoor parking buildings where autonomous 
driving may be involved, the accuracy of positioning technology is severely degraded by factors 
such as building occlusion and multi-path effects and cannot meet the positioning requirements.(1) 
Indoor environments are characterized by a more serious signal masking than outdoor 
environments, a limited openness, a stable and orderly layout, a similar composition of indoor 
structures, and obstacles with regular characteristics. In indoor environments with these 
characteristics, mobile platforms must select appropriate indoor positioning methods to meet 
real-time positioning and navigation requirements.
 Indoor localization methods can be classified according to technical principles into several 
types: nearest neighbor method, center of mass localization method, pole method, polygon 
method, triangulation method, fingerprint method, and trajectory projection method. The 
nearest neighbor method determines whether the target is within the range of the transmitting 
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point by the reception of physical signals with range restrictions. The multilateral, polar, and 
triangulation methods are all rendezvous-based localization methods. Triangulation is used by 
Wireless Fidelity technology, particularly radar systems. RFID technology relies on the nearest 
neighbor method for positioning.(2) The positioning accuracy mainly depends on the position and 
density of the reference label. To achieve higher positioning accuracy, the deployment is usually 
relatively complicated. Makki et al.(3) proposed an important indoor positioning research method 
that uses wireless device RSSI. The multilateral method determines the location of the target 
point by measuring the distance from the target point to be measured to a known reference point; 
in practical applications, the distance estimation is based on the signal arrival time or enhanced 
observation time difference (E-OTD). Drane et al.(4) gave guidance on how to use moving 
windows to average measurements and reduce signal measurement errors. The method proposed 
by Drane et al. for localization, which combines surrounding mobile calling devices and base 
stations, is an improvement on the E-OTD method.  Faragher and Harle(5) proposed an indoor 
localization method based on parameters such as how to rapidly attenuate the reception rate of 
customer broadcasts. Constantinescu(6) used it in emergency call services to find the location of 
a signal. The triangulation method determines the location of the target point by obtaining the 
angle between the target point and two known reference points to determine a unique triangle. 
This method is used in camera-based positioning systems.(7) The fingerprint method establishes 
a fingerprint map or database by pre-field collection and analysis, after which the signal 
characteristic parameters that are the closest match to those collected by the device are searched 
for in the fingerprint database, whose corresponding location is the location of the target. 
Miyamoto et al.(8) proposed a fingerprint method for estimating the user location that employs 
wireless LAN access points (APs) based on the fingerprint localization method. Mansour 
et al. (9) controlled the pedestrian dead reckoning drift under unconstrained smartphone 
conditions to improve the pedestrian dead reckoning performance. This approach is based on the 
trajectory projection method, which essentially determines parameters such as the pedestrian’s 
step length and directional velocity using the known position at the previous moment. The 
essence of this technique is to determine the parameters of the pedestrian’s motion step and 
directional velocity to obtain the position information at a time when the position is known.
 Although these methods can meet indoor positioning requirements in some scenarios, they 
have shortcomings and defects. The nearest neighbor method must receive signals from the 
equipment set up in advance, which increases the cost of prearranging scenes and generally 
reduces location accuracy. The fingerprint method has an excellent localization effect but is 
difficult to use in the real-time localization system of a complicated indoor environment owing 
to the huge workload of establishing the fingerprint map in the early stage and the low self-
adaptability to the environment. The trajectory projection method is also prone to error 
accumulation during the operation of the system, which can lead to the reduced robustness and 
accuracy of the system.
 Because laser scanning matching, the core of positioning technology, directly affects the 
final positioning accuracy, laser point cloud matching methods are mainly divided into point-
based and feature-based matching methods. Feature-based matching methods mainly involve 
the use of point or surface features for matching. Jensfelt and Kristensen proposed a global 
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scanning matching method based on point features that used corner and edge points,(10) which 
are more applicable to indoor scenes. The most classical matching method based on line features, 
the separation and merging algorithm, is a widely adopted line segmentation method.(11) 
Although this method is simple and efficient, it is only suitable for the scenario of 2D scan 
matching. Matching methods using point clouds mainly include the iterative closest point 
method (ICP)(12) and the normal distribution transformation method (NDT).(13) The basic 
principle of ICP is to determine the corresponding set of nearest points from the set of measured 
points as a measure of the distance from the set of points to another set of points. Then, a new set 
of nearest points is formed by calculation, after which an iterative calculation is performed to 
reduce the distance until a value of the residual sum of squares is satisfied. At this point, the 
value of the objective function of the residual sum of squares remains unchanged. However, in 
practical applications, the localization results are inadequate, the matching time is long, and the 
iterative process may fall into a local optimum.(14)

 To develop a method that can be adapted to accurate localization indoors, in this paper, we 
propose a method that uses an occupancy grid map(15) to represent an arbitrary position of an 
autonomous mobile platform and performs a map gradient approximation. The method analyzes 
the effect of the multi-resolution map to perform a series of 3D pose estimation tasks.(16) For the 
precise localization of the mobile platform itself, any gradient-based method has the risk of 
falling into a local optimum. To reduce the risk of this occurrence, we carried out experiments 
employing another method similar to the image pyramid method in computer vision for relevant 
computations in scan matching, and we generated multi-resolution maps on a high-resolution 
map without downsampling operations. By converting the 2D image based on the interpolated 
probability distribution in the case of using the occupancy grid map, we calculated the occupancy 
probability with sub-grid accuracy, enabling the probability and the largest case in the 
probability distribution map to be used as a result for scan matching analysis. This approach 
shortened the matching time and improved the indoor localization of a robot.

2. Point Cloud to 2D Image Conversion

 The point cloud data scanned by a multi-line vehicle-mounted light detection and ranging 
(LiDAR) system carried by a mobile platform is not continuous and must be processed to form a 
continuous point cloud. The simple pre-processing of a target point cloud, which is generally 
performed manually, results in an uneven distribution of the point cloud because of the scattered 
distribution and the effect of the angle of the scanning laser. In the localization experiment based 
on point cloud image conversion, we used a gradient approximation algorithm that employs an 
occupancy raster map to represent an arbitrary position of the mobile platform in indoor 
positioning,(17) where the pitch angle of the mobile platform is almost negligible, owing to the 
positioning in an indoor corridor.
 The cells of a grid map can be seen as a sample distribution of potentially continuous 
probabilities, and the introduction of a bilinear-filtering-based method of point cloud 
interpolation calculation allows the estimation of the occupancy probabilities of sub-grid cells. 
Then, to avoid the risk of falling into a local optimum, according to the experimental results, 
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multiple occupied grid maps are chosen for use, with each coarser map having half the resolution 
of the previous one. Also, instead of using a Gaussian filtering method, we generate multiple 
levels of maps on a high-resolution map, and maps of different resolutions are saved while they 
are aligned for attitude analysis, ensuring the robustness of the method.
 In this experiment, a single frame of a local point cloud was pre-processed and then projected 
so that the point cloud was in a set 2D plane. The existing point cloud was then processed using 
a uniform sampling algorithm to produce a uniformly distributed point cloud. On this basis, a 
local plane coordinate system was established with P00 as the origin and P01, P10, and P11 
forming a unit square that contained an arbitrary serial number continuous coordinate point Pm, 
as shown in Fig. 1.
 In accordance with the above-mentioned rule, M(Pm) is the occupancy probability value at 
any point Pm, and M(Pm) and the gradient ∇M(Pm) are calculated from the values at P10, P11, P00, 
and P01, the four closest points to Pm, as follows:
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Fig. 1. (Color online) Obtaining occupancy probabilities at any location using interpolation.
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 Note that the sample points of the map lie within a regular grid owing to the uniform 
sampling process whereby they are separated from each other by a unit length, which optimizes 
the gradient approximation equation. From Eq. (2), an approximation can be derived according 
to the formula.
 Any gradient-based calculation runs the risk of falling into a local optimum, and the 
probability at Pm is interpolated by calculating the gradient. To avoid the risk of falling into a 
local optimum, we used multi-resolution maps in experiments to overcome and mitigate this 
risk. Here, our approach was inspired by the image pyramid approach used in computer 
vision.(18) However, instead of using Gaussian filtering and downsampling, we generated 
multiple levels of maps on a high-resolution map to obtain a low-resolution map, with each level 
of resolution being half that of the next, ensuring consistency in the scale of the map.
 The maps at all resolutions were obtained from calculations in which the positions of Pm 
points were controlled, where a sparse distribution of Pm points resulted in low-resolution maps 
and a dense distribution of Pm points resulted in high-resolution maps. This ensured that the 
results obtained at different scales reflected the distribution of the continuous probability 
density, increasing their accuracy. The obtained multi-resolution maps are shown in Fig. 2 in 
order of raster size (0.1, 0.05, and 0.03 m).
 In the experiments, the lowest-resolution map was first matched and then input to the next-
highest resolution map by rotating the translation matrix, which was used as the initial state for 
the next level of scanning and matching. This approach limited the range of matching, thus 
increasing the speed of the task and reducing the computational burden.

3. Map-matching Method Based on Optimization by Gauss–Newton Method 

 Matching is a process in which two point clouds of data are continuously scanned and 
aligned. We use the point of departure of the mobile platform as the origin for matching 
calculation, and the computed point cloud data must be matched with the point cloud data of the 
previous frame to achieve the localization of the mobile platform. In our experiment, we used 
the Gauss–Newton method(19) for the map matching calculation, which is a commonly used 
method in computer vision. Localization using scan matching generally starts with ICP, a 
general method for aligning point clouds, but this method is expensive and must be performed in 

Fig. 2. (Color online) Probability distributions of a point cloud at a location for different resolutions (in order of 
raster size: (a) 0.1, (b) 0.05, and (c) 0.03 m).

(a) (b) (c)
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each iteration. The Gauss–Newton method reduces the calculation burden of the system and 
improves the calculation efficiency while also meeting the requirement of real-time data for the 
system as much as possible. The Gauss–Newton method is a nonlinear least-squares problem 
optimization method that can only be used to deal with quadratic functions to achieve data 
fitting and the optimal estimation of the function. The objective function F(x) is optimized to 
obtain its minimum value F(x)min. In the computational process of this method, an initial value 
x0 of x is first given, and then n iterations are performed. In this cycle, the flag is ∆xn. According 
to the solution of the incremental equation H∆xn = g, if ∆xn is sufficiently small to stop the 
computation and output the value, then the solution of the incremental equation must be 
computed first. The Hessian matrix is the second derivative of the function, which is equal to 
J(x)TJ(x). —J(x)f(x) is represented by g. The solution of the incremental equation requires the 
current Jacobi matrix J(xk) and its error f(xk) as the basis for the nth iteration of the computation. 
Here, x is an n-dimensional variable to be optimized, and F(x) can project this n-dimensional 
variable to a scalar nonlinear function so that when F(x) achieves the minimum value, F(x)min 
can be regarded as the optimal solution. The guarantee of a real-time experiment relies on the 
approximation of the second-order Taylor expansion of the objective function F(x) using the 
Taylor first-order expansion of the error function f(x) in the Gauss–Newton method.
 By using the Gauss–Newton method, the computational burden can be reduced by avoiding 
the matching calculation of all the corresponding points in the traditional ICP method. We can 
also reduce the computational burden by continuously scanning the raster map converted into a 
2D probability distribution by aligning the reference point cloud and the projection of the source 
point cloud, and by continuously optimizing until the sum of the probability distributions of all 
rasters is maximized, as expressed by the following equation:

 ( )( ) 2
1argmin 1 ,n

iiT M S T
=
 = − ∑*  (3)

where T = (Tx, Ty, Tθ) denotes the initial position of the vehicle and this matrix is the unit matrix. 
The maximum value of M(Si(T)) is obtained by minimizing the T* function, and the sum of the 
probability distributions of all the grids is maximized. Here, the coordinates of the laser point i 
after the transformation are represented by Si(T), and M(Si) represents the occupancy probability 
of point Si in the graph. Note that because the Gauss–Newton method can only solve the least-
sum-of-squares problem, it is written as Eq. (4) in the form of a sum of squares to suit the 
Gauss–Newton method calculation needs. The calculation formula is as follows:
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Because M(Si) is a nonlinear function of Si, a first-order Taylor expansion is performed on it as 
follows:
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At this time, the equation that minimizes ∆T is then obtained by finding the partial derivative of 
∆T and making it equal to 0, as follows:
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Moreover, the gradient ∇M(Pm) can be approximated using Eq. (2), and from Eq. (4), we obtain
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 Thus, after performing the above calculations, all values in the incremental equation 
expressed by Eq. (7) are known, and the transformation matrix ∆T is calculated using the 
Gauss–Newton method on top of this equation for the iterative solution. The output results can 
be used to inversely calculate the position coordinates of the robot.

4. Results

 The experiments presented in this study were conducted in a corridor on the second floor of a 
teaching building in a college, and the state and effect of real-time localization were studied by 
interpolating the probability-distribution-based 2D image conversion of point clouds based on a 
single frame of static point cloud data. The length of the corridor was about 70 m and the width 
was about 3 m, with no large obstacles in the corridor. A HESAI Pandar 40 multi-line vehicle-
mounted LiDAR model was used in the experiment, which has a thread count of 40, a scanning 
frequency of 10/20 Hz, a range accuracy of ±2 cm, an angular resolution of 0.2/0.4°, and a 
vertical field of view angle between −16 and 7°. The radar and mobile platform used in the 
experiment are shown in Figs. 3 and 4, respectively. In the experiments, we collected a single 
frame of point cloud data, which was matched with the previous frame of point cloud data, and 
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the position of the mobile platform was localized in real time by back-calculating the position of 
the mobile platform in the two frames. Then, the accuracy of the matched results was evaluated 
and a robustness analysis was performed.
 To avoid the risk of this gradient-based approach falling into a local minimum, in this 
experiment, we used a method inspired by image pyramids in computer vision. However, unlike 
the image pyramid method, we did not obtain maps with different resolutions by Gaussian 
blurring or downsampling in the experiment. Instead, we obtained maps by controlling the 
sparsity of the interpolated points Pm. The resolution is related to the sparsity of Pm; the higher 
the density, the higher the resolution of the map obtained, and the lower the density, the lower the 
resolution of the map. As a rule of thumb, the resolution of multi-resolution maps in indoor 
scenes can be set between 0.03 and 0.5 m. Four matching experiments were conducted with the 
highest resolution of the cell grid set to 0.03, 0.05, 0.1, and 0.2 m. The matching map-building 
effects of three of the highest resolutions used in the experiments are shown in Fig. 5.
 The map matching results for the three different maximum resolutions are shown in Table 1. 
The results in the table verify the above-mentioned analysis. At the map resolution of 0.03 m, the 
matching accuracy RMS has the highest value among the three resolutions, and the 
corresponding single-frame processing time is also the longest. For the map resolutions of 0.05 
and 0.1 m, despite the low matching accuracy, the average single-frame time is shorter than that 
for the resolution of 0.03 m. Thus, the use of these resolutions can increase the overall speed and 
robustness of the computation.
 However, matching failed for the map with a resolution of 0.2 m in the experiment. The 
0.2-m-resolution raster map was very long for the raster length, and the description of the 
realistic spatial structure details was very vague and inaccurate. Moreover, because the 
experiment was conducted in a corridor, two sides of the environment were corridor walls, there 
was a long distance between the ends of the corridor, and there were no highly recognizable 
markers and references in the environment, which led to a number of mismatched frames. The 
number of incorrect matches is significantly higher than those of other resolution maps, mainly 
in map output that does not match the realistic environment significantly, which led to the failure 

Fig. 3. (Color online) HESAI Pandar 40 LiDAR. Fig. 4. (Color online) Platform for experiments.
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of matching. The results of matching positioning and the environment map for a resolution of 0.2 
m are shown in Fig. 6.
 The smaller the raster length, the more detailed the description of the environment in the 
building and the longer the processing time as the amount of information in the description of 
the environment increases. Therefore, the use of multi-resolution maps can alleviate the problem 
of falling into a local optimum, but the use of lower-resolution maps in multi-resolution mapping 
can also reduce the computational burden and increase the robustness and speed of the matching. 
They can also be used as initial values for matching under higher-resolution maps. An excessive 
raster length describes the details inside the building in insufficient detail, leading to a large 
number of similar structures and the generation of a large number of false matching frames, 
resulting in the failure of the matching process.
 The experimental results indicate that the use of multi-resolution maps for matching 
localization can avoid the situation of falling into a local optimum due to high-resolution maps 

Fig. 5. (Color online) Overall raster plot for three resolutions (top to bottom: 0.1, 0.05, and 0.03).

Table 1
Single-frame matching effects for three different maximum resolutions.
Map resolution (m) 0.03 0.05 0.1
Matching accuracy RMS (correct frame only) (m) 0.08 0.12 0.21
Average time per frame (s) 0.04 0.03 0.02
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while considering the accuracy. They also indicate that the adoption of multi-resolution maps is 
effective in an indoor corridor. Compared with other common indoor positioning technologies, it 
can establish an accurate map. A comparison of different indoor positioning technologies is 
shown in Table 2.

5. Conclusions

 Because the conditions of indoor environments are different from those outdoors, for 
example, the layout of indoor environments is more orderly and regular, to improve the accuracy 
of mobile platform localization indoors, we developed a method that uses the occupancy grid 
map method to represent an arbitrary position of a mobile platform and uses the gradient 
approximation to represent the occupancy grid map. To improve the calculation efficiency and 
speed of the entire process, we used the Gauss–Newton method in our indoor positioning 
experiment. To avoid falling into a local optimum, in this study, we used a multi-resolution map 
method similar to the image pyramid method for matching, which ensures robust, accurate, and 
high-speed matching. The point cloud conversion image-based method has a higher accuracy 
than the WiFi positioning method. This method can also establish an indoor map with a similar 
accuracy to the general UWB and other high-precision positioning methods. Moreover, it can be 
widely used on mobile platforms such as indoor unmanned dining carts to achieve a stable 
positioning mobile system that does not require the placement of base stations in the scene and is 
not subject to signal interference. The proposed method can also be used for indoor environment 
detection and mapping. However, there were shortcomings in our experiment, such as the use of 
a single indoor environment (a corridor). There was also no comparison with other indoor 

Fig. 6. (Color online) Overall raster map at 0.2 m resolution.

Table 2
Comparison of different indoor localization techniques.
Indoor positioning method WiFi LiDAR  Ultra wideband Bluetooth
Accuracy of positioning 5 m 8–21 cm 6–10 cm 1–5 m
Can maps be created? No Yes No No
Applicable scenarios Yes No Yes Yes
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localization methods. Thus, future experiments will be conducted in a variety of different indoor 
environments, including halls, offices, and underground parking lots. We will also study the 
impact of different scenes and obstacles on mobile platform matching and positioning, and 
introduce more indoor positioning methods on this basis. We will compare the advantages and 
disadvantages of these methods for different situations to achieve higher positioning accuracy 
and results in specific environments.
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