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 Maps possess prominent advantages in expressing geographic information data in general 
and in displaying spatial information about events of natural disasters in particular. With the 
recent enhancement of geographic information acquisition capabilities, the demand for thematic 
mapping of multitype disaster emergency response has dramatically increased. To solve the 
problems of insufficient information transmission and lack of combination of features of objects 
in emergency mapping, we introduce the concept of information entropy, an important indicator 
of artificial intelligence in the field of maps, and proposes a constructive method for calculating 
the entropy of comprehensive feature information of map area objects, aimed at the analysis of 
problems of disaster severity. Through the quantitative description of indicators of the geometry, 
spatial distribution, and disaster type of an area object, a comprehensive information entropy 
calculation model of the area object is constructed, through which the comprehensive feature 
information entropy of the area object is calculated and visualized. The experimental results 
obtained for typical case analyses show that the comprehensive feature information entropy 
model is superior to competing methods as it is more suitable for the requirements of human 
cognition and judgment. Moreover, this model improves the effectiveness of disaster thematic 
map information transmission and enriches the traditional emergency mapping information 
transmission theory.

1. Introduction

 The People’s Republic of China is a vast country with a variety of landscapes and a high 
incidence of natural disasters. Flooding, drought, earthquakes, and other disasters cause large 
human and financial losses every year, and the numbers of various disasters are increasing year 
by year.(1) Disasters are notorious for their adverse effects on almost all aspects of human life. 
Only by correctly understanding disasters, analyzing their severity, and taking decisive and 
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reasonable measures can we reduce disaster losses. In the modern era of artificial intelligence, 
and in the social context of frequent occurrences of various public emergencies, disaster events 
tend to have strong spatiotemporal attributes. With the extensive application of geographic 
information data, the use of maps as a carrier to express disaster events is becoming increasingly 
common and is oriented toward multiple types of disaster events, wherein emergency mapping 
has become more urgent. As a model of the objective world, maps are the main tool for the 
transmission of spatial information.(2) Taking earthquakes as an example, we can collect a large 
amount of current data after a disaster occurs, such as satellite image data, vector terrain data, 
and disaster attribute data. How to quickly and accurately grasp earthquake and post-earthquake 
information, analyze earthquake severity, and enact decision-making for post-earthquake rescue 
has become the main focus and a source of difficulty in current research. Liu(1) analyzed the 
attributes and severity of disasters, indicating that it is important to understand the severity of 
disasters and effectively avoid them as much as possible. Liu et al.(3) proposed the use of the 
Lorentz curve and Gini coefficient as indicators to measure the unevenness of the spatial 
distribution of precipitation to express the degree of regional drought and waterlogging, so as to 
judge whether there is a possibility of a flood disaster. Post-disaster emergency mapping to 
understand the damage of buildings and other features in the disaster area in real time, quickly 
locate emergency rescue areas, and provide a reference for rescue, forecasting and decision-
making, which require rapid and accurate positioning of key areas as well as quantitative 
measurement of map information, have also become an urgent key problem. However, the map 
information theory and the method of disaster severity analysis have been insufficiently studied, 
thus, new theories are needed to solve this problem.
 In the 1960s, the Czech cartographer Kolácný(4) introduced the concept of information into 
map cartography, and subsequently, the information transmission function of maps began to 
have a major impact on cartography. A new field of modern cartography emerged in terms of the 
theory of map information transmission, and the map information transmission constitutes the 
basic content of modern cartography theory. This field covers cartographic synthesis theory, 
map information theory, map perception theory, map model theory, and map semiotics.(5) The 
measurement of map information is the basic problem of map spatial information transmission, 
map information services, map quality evaluation, and other related technologies and 
applications. The mathematization of map information transmission theory is an important step 
in the map representation of spatiotemporal data.(6) With the increasingly extensive application 
of emergency mapping, many scholars have studied the theory and method of information 
measurement of map elements. Shannon,(7) a celebrated American mathematician, pioneered the 
application of information entropy theory to map information measurement based on probability 
theory and used entropy to measure the content of information, thereby laying a solid foundation 
for modern information theory. Sukhov(8) and Kirschbaum et al.(9) and proposed a measure of 
information entropy of symbol types, introducing information theory to cartography for the first 
time, but the entropy they dealt with was still a statistical entropy that did not consider spatial 
relationships. Knopfli(10) first applied the measurement of map spatial information to 
cartographic generalization, but his calculation method based on the entropy of Shannon 
information required improvement. Later, He(11) used information theory to measure specific 
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types of indirect information such as location information and color information. Ou and Yao(12) 
considered advanced cartographic elements, such as diversity and complexity, and proposed a 
“comprehensive eigenvalue measurement method”, but their analysis of the relationship between 
diversity, complexity, and difference of symbols required further improvement. On the basis of 
the above contributions, Li and Huang(13,14) proposed the novel concept that the map information 
should include not only statistical information, but also spatial relationship information, 
geometric information, and thematic information. Deng and colleagues(15–18) conducted a 
systematic study on the information measurement of area features. Throughout existing research 
theories and methods, the information of map features has mostly been measured solely as 
mathematical probability and statistics, a paradigm that does not combine with the characteristics 
of area features and the support of objective models in mapping. Therefore, the aim of this paper 
is to maximize the use of the characteristics of various types of information of map area features 
and to combine these features with factors that affect the amount of information. We calculate 
the geometric feature information entropy of area objects through the size, irregularity, and 
quantity of map area objects, calculate the spatial distribution feature information entropy of 
area objects through the topological relationship, distance relationship, and distribution 
relationship of area objects, and calculate the type feature information entropy through the color 
difference of area objects. The comprehensive feature information entropy of map area objects is 
calculated from the three features of size, irregularity, and quantity, and the influence of 
different features on the information entropy is visualized and compared, which enriches the 
traditional map information transmission theory and provides a theoretical reference for 
emergency mapping.

2. Measurement Model of Map Information 

2.1 Shannon information entropy measurement model

 Shannon information entropy is a measure of information that is based on probability and 
statistics, which is governed by the earliest mathematical theory applied in the field of map 
information measurement. Shannon proposes that each map element appears with a specific 
probability. The content of map information is judged by the uncertainty of the element symbols 
on the map. The greater the uncertainty, the greater the content of map information. That is, the 
content of map information is closely related to the frequency of map symbols,(19) i.e., the more 
frequent the map symbols, the richer the content of map information.
 Shannon information entropy deals with the information associated with a variable X 
assumed to be a random variable with n possible values, each with a specific probability. The set 
of probabilities for the n possible values is depicted as 1 2 1{ , , , , }n nP P P P−… . Then the information 
entropy H(X) of the random variable X is

 ( ) ( ) ( )1 2
1

, , , log
n

n i i
i

H X H P P P P P
=

= … = −∑ . (1)
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The quantity in Eq. (1) represents the average number of binary digits (bits) required to represent 
or transmit the random variable X, and hence the “bit” is considered the unit for this quantity.
 The frequency of a feature on a map is not necessarily equal to that of another feature. In 
spatial cognition of people, a map with a greater content difference, more element diversity, and 
a more widely spread distribution density appears more informative. Therefore, the entropy 
method does not conform to people’s spatial cognition of a map. It can describe the statistical 
information on the map, but not the characteristics of the features or the spatial information, and 
hence there are certain limitations in the measurement of map information by the entropy 
method.

2.2 Measurement model of feature information entropy 

 Gao(20) proposed that “map space cognition is the study of the environment on which people 
understand their existence, including the relevant positions, dependences, changes, and 
regularity of various things and phenomena”. The process of human cognition of map space is 
that of distinguishing the differences in map features. The greater the map contents and the 
greater the differences within these contents, the greater the amount of information obtained. 
Therefore, a feature based on a map information measurement model is more accurate than 
Shannon information entropy in measuring map information.(12) The information entropy is 
therefore calculated as

 ( )2
1
log 1 ,

n

i
i

I V
=

= +∑  (2)

where Vi represents the standardized index describing the spatial and nonspatial features in the 
map, and the unit of information is again the bit.
 The feature based on the information entropy measurement model considers the diversity and 
the differences within the map content. The greater the diversity and the differences, the greater 
the amount of information entropy, a rule that conforms to the map space cognitive rules of 
people, and is suitable for map information measurement. Therefore, we use the feature based on 
the information entropy measurement model combined with the geometric and spatial 
distribution characteristics of map area objects to build an index that quantitatively describes the 
map area object features as well as to build a calculation model of the map area object 
information entropy; this is a novel paradigm that solves the problem of measuring map 
information only using mathematical probability.

3. Calculation Method of Comprehensive Feature Information Entropy of 
Disaster Map Area Objects

 Disaster map geometric information includes the location, quantity, size, and shape of map 
features. By contrast, spatial relationship information includes the topology, direction, distance, 



Sensors and Materials, Vol. 34, No. 12 (2022) 4409

and distribution of map features, while thematic information includes the type and importance 
of map features.(2) Depending on the information characteristics of disaster map area objects, 
different features are expected to generate different types of information. For convenience, we 
select seven prominent aspects of information: quantity, size, shape, topology, distance, 
distribution, and type. We next use the feature information entropy measurement model to 
establish a quantitative description of the features, and build an area object information entropy 
calculation model based on each object feature. Figure 1 shows the basic strategy employed for 
computing comprehensive feature information entropy.

3.1 Information cognition of map area objects 

 Map area features are composed of a group of closed boundary lines. The different spatial 
morphological structures of boundary lines form various morphological structures of area 
features, thus generating the spatial information of these area features.(5) In terms of the external 
form, the area object mainly includes the area in a straight-line form and a curve form, where the 
area in the straight-line form includes residential areas and other similar areas, and the area in 
the curve form includes faceted water systems, vegetation, and other similar areas, as shown in 
Fig. 2. In terms of internal filling, area objects include solid areas and imaginary areas. In the 
map, solid areas refer to area features with clear outlines and clear areas, such as areal waters, 
residential areas, and other similar features, while imaginary areas refer to areas formed by 
gathering points and lines or intermittently enclosed points and lines, such as large-area 
vegetation coverage and other similar features, as shown in Fig. 3. In summary, the information 
measurement of map area objects requires comprehensive information measurement of the 

Fig. 1. (Color online) Strategy for computing comprehensive feature information entropy. 
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geometric, spatial distribution, and type characteristics of the area objects in accordance with 
their spatial morphology and relationship, combined with the map spatial cognitive 
characteristics of people.
 According to research on the human brain in the field of artificial intelligence, the human 
visual system does not directly recognize the signal entering the human eye, but it utilizes an 
internal derivation mechanism to analyze and understand this visual signal.(20,21) According to 
this internal derivation mechanism, the human brain can model the visual perception signal, 
separate the relevant and trivial information, and thus measure the importance of various pieces 
of map information. The measurement model of the comprehensive feature information entropy 
of area objects uses the information features and the cognition of area objects to select the key 
factors that affect the information of area objects, and it calculates the information entropy of 
features of various types and the comprehensive features of area objects.

3.2 Calculation method of feature information entropy of disaster map area objects

 Disaster map area objects have various categories of spatial features, including the main 
categories of geometry, spatial distribution, and type. In terms of geometry, map area objects 
have different shapes and sizes, which are manifested in the complexity and diversity of 
geometric forms.(5) In terms of the spatial distribution, the uneven distribution of map area 
objects constitutes the differences within and diversity of pieces of information on a map. In 
terms of the type, differently colored objects on a map represent different types of ground 
objects, which constitute differences among various parts of the map content.

Fig. 2. (Color online) External forms of area objects. (a) Area object with a straight-line form. (b) Area object with 
a curve form.

(a) (b)

Fig. 3. (Color online) Inner padding of area objects. (a) Solid area. (b) Imaginary area.

(a) (b)
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3.2.1 Geometric Feature Information Entropy

 The geometric features of a disaster map area object mainly include its shape features, size 
features, and quantitative features. The size features are quantitatively described by the area of 
the area object, and the differences within the shape features of the area object can be expressed 
by the degree of irregularity of the shape. The quantitative features are described by the number 
of elements of the same type. In a vector map, the boundary of the area object is a polygon 
obtained through the connection of multiple inflection points. Taking advantage of the 
connection information of the inflection points, we propose a shape irregularity measurement 
method based on the standard deviation of the polygon internal angles. Generally, the size of the 
internal angles can directly represent the shape of the polygon, and the standard deviation of the 
internal angles can reflect their dispersion degree. The larger the standard deviation, the greater 
the dispersion degree of the internal angles, and the more irregular the area object. The 
calculation process of the standard deviation of the internal angles is shown in Fig. 4.
 Taking a concave polygon as an example, as shown in Fig. 5, the side length information is 
calculated using the inflection point coordinates and connection relationship, and then the 
internal angles of the polygon are calculated by applying the inverse-cosine theorem [Eq. (3)].

 
2 2 2

2 arccos
2

a c b
ac

∠ + −
=  (3)

Fig. 4. Calculation process of the standard deviation of the internal angles.
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Here, 2∠  is the internal angle corresponding to vertex B in ΔABC, and a, b, and c are the 
lengths of the sides opposite angles BAC∠ , 2,∠  and ACB,∠  respectively.
 However, in the actual calculation, when the internal angle ( 1∠ ) at point B is a superior angle 
(180 1 360∠° < < °), since the principal range of the inverse cosine function is [0, π], the 
calculation result is the size of the external angle (inferior angle, 0 2 180∠≤ ≤ °) of the point, 
making it necessary to judge the superior and inferior angles of the internal angle of the point. 
To solve this problem, a method based on the direction of the vector product of two vectors is 
proposed to determine the admissible and inadmissible angles, as shown by

 
  reflex angle : 0

  : 0

AB BC

inferior angle AB BC

 × <


× >

 

   (4)

AB


 and BC


 are vectors formed by edges AB and BC, respectively, in Eq. (4).
 After obtaining all the internal angles of the area object, we calculate their standard deviation  
s to measure the irregularity of the area object.
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1

n
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n

=
−

=
−

∑  (5)

Here, n is the number of the internal angles of the polygon, and xi and x  respectively represent 
the size and mean value of the ith (1 ≤ i ≤ n, i is an integer) internal angle.
 Using the shape, size, and quantity characteristics of the area object, the geometric 
information entropy of the area object is expressed via a generalization of Eq. (2) as

 2 2 2
1 1 1
log 1 log 1 log 1 .

n n n
i i i

geometry
i i i

S s mI
S s m= = =

     = + + + + +     
     

∑ ∑ ∑  (6)

Here, n is the total number of objects in the map, Si and S are the area of the ith (1 ≤ i ≤ n, i is an 
integer) area object and the average area of an object on the map, si and s  are the variance of the 
sum of the internal angles of the break points of the area object contour and the mean of the sum 

Fig. 5. (Color online) Concave polygon object.
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of the internal angles of the target on the map, respectively, mi is the number of target element 
categories of the ith plane, and m  is the mean value of the element categories given by

 
nm
q

= . (7)

Here, q is the number of types of elements in the map.

3.2.2 Spatial distribution characteristic information entropy 

 The spatial distribution characteristics of the disaster map area objects mainly include the 
topological relationship, the distance relationship and the distribution relationship between area 
objects. The spatial proximity relationship between objects on the map can be described by 
Voronoi diagrams, wherein the adjacent edges of the Voronoi area represent the topological 
proximity relationship of objects on the map.(18) The topological relationship can be quantitatively 
described as the topological adjacency degree, that is, the number of edges in the Voronoi region. 
The more the number of edges, the more complex the adjacency relationships of the object. In 
the construction of a Voronoi diagram, it is necessary to consider the range of the region, which 
reflects the distance relationship between adjacent objects. Therefore, the distance relationship is 
quantitatively described as the area of the Voronoi regions. The greater the difference in the area 
of the Voronoi region of different area objects, that is, the greater the difference in the distance 
relationship, the greater the amount of spatial information generated by the distance. The 
distribution relationship of objects is quantitatively described by the distribution density, which 
can be determined as the ratio of the total area of the Voronoi diagram to the number of edges in 
the Voronoi region. According to the topological relationship, the distance relationship, and the 
distribution relationship of area objects, the information entropy of area objects in terms of the 
spatial distribution is expressed as

 2 2 2
1 1 1
log 1 log 1 log 1

n n nVi Vi i
distribution

Vi i i

S SA DI
A DS= = =

 −    = + + + + +        
∑ ∑ ∑ . (8)

Here, Ai and A  are the number of edges in the Voronoi region of the ith area object and the 
average number of all such edges over all objects, SVi and VS  are the area of the Voronoi region  
of the ith area object and the average of all such areas, and Di and D are the distribution density 
of the Voronoi region of the ith area object and its average, respectively. Here, the distribution 
density Di is expressed as

 V
i

i

SD
A

= − , (9)

where SV represents the total area of all Voronoi areas in the figure.
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3.2.3 Type feature information entropy

 The type characteristics of disaster map area objects are mainly reflected in the color 
difference of area objects. Different colors represent different types of area objects. The color 
difference can be quantitatively described by a gray-scale value. In a disaster thematic map, 
different disaster types or different levels of the same disaster type are represented by different 
colors. Gray-scale is a series of transition colors ranging between pure black and pure white. 
Each object on the map has a gray-scale value, which can be used to distinguish different ground 
object types. For example, the four levels of earthquake disasters are severe, major, large, and 
general, and the affected areas are distinguished by four colors in accordance with the severity 
of the earthquake, as shown in Fig. 6. By contrast, the red-green-blue (RGB) color model of map 
symbols is a different way of mapping colors to numerical values. The range of gray-scale values 
in the gray-scale model is [0, 255], where 0 denotes black and 255 depicts white. The larger the 
gray-scale value, the closer the color is to white, and the smaller the gray-scale value, the closer 
the color is to black. This means that the smaller the gray-scale value, the deeper the color, the 
greater the visual impact on people, and the more information is obtained. In this paper, the 
floating point method is used to convert RGB values to gray-scale values as follows:

 R*0.299 G*0.587 B*0.114,g = + +  (10)

where R, G, and B represent the intensity values of red, green, and blue, respectively, and range 
from 0 to 255. Note that (R, G, B) = (0, 0, 0) means black and (R, G, B) = (255, 255, 255) means 
white.
 Using the gray level features, the information entropy of the area object in terms of type 
features is expressed as

 2
1
log 1 ,

n
i

type
i

GI
G=

 = + 
 

∑  (11)

where Gi and G  are the gray-scale value of the ith area object and the average gray-scale value 
of the map, respectively.

Fig. 6. (Color online) Symbols for areas with different earthquake severity ratings. (a) General. (b) Large. (c) 
Major. (d) Severe.

(a) (b) (c) (d)
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3.2.4 Comprehensive feature information entropy

 After calculating the results I of various types of information entropy, we standardize them 
by the range standardization method, as shown in Eq. (12), and we obtain Iʹ as the processed 
result, which expresses the information entropy of the disaster map area object. 

 min

max min
.I II

I I
−

=
−

′  (12)

Here, Imax and Imin are the maximum and minimum values of I, respectively. Note that the 
standardization process in Eq. (12) transforms the raw value of I in the range [Imin, Imax] to the 
processed value of Iʹ in the range [0.0, 1.0].
 Combining the geometric, spatial distribution, and type characteristics of the map area 
objects, we adopt the feature-based map information measurement model, then obtain the 
information entropy of the disaster map area objects as

 geometry distribution typeI I I I= + +  (13)

4. Experimental Analysis

4.1 Information entropy measurement of disaster data

 As the research objects, we selected and symbolized experimental data from the building-
evaluation data of the Haiti earthquake in the certain area, the buildings that collapsed in the 
earthquake, and areas with high population density in a campus, such as the playground and 
classrooms. The overlapping parts of the selected areas are the areas with high population 
density in the campus damaged by the earthquake. After cleaning the missing, redundant, and 
other abnormal data, a total of 568 objects were selected. A general drawing and a partial display 
of the study area are shown in Fig. 7.
 Among the 568 objects selected, the 386 objects in orange are collapsed buildings. The green 
area objects denote the data of the high-population-density areas on campus, totaling 182 
objects. The area, irregularity, topological relationship, distance relationship, distribution 
density, and gray-scale value of the two types of elements in Fig. 7 were then calculated. The 
experimental starting data of the damaged buildings (Damaged_Buildings) are shown in Table 
1, and the experimental starting data of the campus areas with high population density (Camp) 
are shown in Table 2. The unit of area is the SI unit (m2).
 On the basis of the data in Tables 1 and 2, we used the comprehensive feature information 
entropy model of area objects to calculate the comprehensive information entropy of all area 
objects in Fig. 6, and then we obtained the comprehensive feature information entropy and the 
sum of the elements in the area with damaged buildings and campus areas with high population 
density. To verify the rationality of the construction method of the comprehensive feature 
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Table 1 
Experiment starting data of Damaged_Buildings.

Number Area Irregularity Topological 
relationship

Distance 
relationship

Distribution 
density Gray value

1 7.06572018 19.24995123 9 7.10999935 0.00331799 170.75200000
2 12.03959982 39.74115749 6 5.95200028 0.00497699 170.75200000
3 12.49130037 46.59011093 7 54.27100035 0.00426599 170.75200000
4 21.46510087 50.73193225 4 3.29549795 0.00746548 170.75200000
5 6.89958005 10.66318401 8 7.05599963 0.00373274 170.75200000
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

386 10.23240020 49.11980913 10 45.10000696 0.00298619 170.75200000

Table 2 
Experiment starting data of Camp.

Number Area Irregularity Topological 
relationship

Distance 
relationship

Distribution 
density Gray value

1 68.14420541 37.81222325 10 14.55001203 0.00298619 151.98100000
2 389.71159948 49.60656089 7 12.34997294 0.00426599 151.98100000
3 59.48338643 50.61152312 4 899.99805986 0.00746548 151.98100000
4 43.97865267 57.86997458 8 41.80001072 0.00373274 151.98100000
5 32.96643483 50.00194367 6 18.64999438 0.00497699 151.98100000
⁞ ⁞ ⁞ ⁞ ⁞ ⁞ ⁞

182 11.35639232 4.66880699 6 5.06000244 0.00497699 151.98100000

Fig. 7. (Color online) Thumbnail of the study area.
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information entropy model of area objects, we compared this method with the measurement 
method using Shannon’ s information entropy model. The results are shown in Table 3. The unit 
of information entropy is the binary digit (bit).
 By calculating the comprehensive feature information entropy results of each area object in 
Fig. 7, we select the center of mass of each area object and use nuclear density analysis to 
visualize the comprehensive information entropy of the two pertinent types of element. At the 
same time, we visualize the comprehensive feature information entropy results of all area 
objects, as shown in Fig. 8. We also visualize the measurement results based on Shannon 
information entropy, as shown in Fig. 9.
 In both Figs. 8 and 9, the information entropy of the blue part is smaller than that of the red 
part. The results of the comprehensive feature information entropy model of the area objects 
(Fig. 8) show that the comprehensive information entropies of the lower left corner and upper 
right corner in the figure are large. By contrast, the Shannon information entropy model (Fig. 9) 
only considers the statistical probability of the area of area objects, thus, the information entropy 
of the areas with a large area distribution is large, and hence, the results show that only the lower 
left corner in Fig. 9 has a large comprehensive information entropy, and the part with a large 
information entropy has a wide range.

4.2 Comparison of missing characteristic indicators

 After we conducted a large number of experiments, we used the control variable method to 
compare the geometric, spatial distribution, and type features, and we obtained the visualization 
results of the comprehensive feature information entropy of missing geometric, spatial 
distribution, and type feature information, as shown in Fig. 10.
 By comparing the results of type features, we found that missing spatial distribution features 
have more influence on the information entropy results of the objects than the missing geometry 

Table 3 
Measurement results of area object information.

Number Type of object Comprehensive feature 
information entropy 

Shannon’s information 
entropy 

1 Damaged_Building 13.73589915 0.077153199
2 Damaged_Building 14.46978293 0.072837961
3 Damaged_Building 17.69845317 0.195099289
4 Damaged_Building 15.68958471 0.071145387
5 Damaged_Building 13.55175936 0.073715032
⁞ ⁞ ⁞ ⁞

386 Damaged_Building 14.97442131 0.058965723
387 Camp 15.94397075 0.161664476
388 Camp 18.65095054 0.367711377
389 Camp 16.64663255 0.118526784
390 Camp 15.86938822 0.126554776
391 Camp 15.66842917 0.099327711

⁞ ⁞ ⁞ ⁞
568 Camp 12.8458188 0.102677923
Σ — 8497.04359 42.60788211
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and type features. We found that after removing the spatial distribution features, the information 
entropy of all area objects decreased, and the information difference between objects weakened. 
Figure 10(c) shows the areas with significant changes, and we conclude that the spatial 
distribution of buildings that collapsed in the earthquake and that of the areas with high 
population density in the campus have a greater impact on the information entropy results than 
geometry and type features. The spatial distribution is more important in the preparation and 
evaluation of the present disaster thematic map.

Fig. 9. (Color online) Visualization of Shannon information entropy measurement results.

Fig. 8. (Color online) Visualization of comprehensive feature information entropy results. (a) Visualization of 
Damaged_Building comprehensive feature information entropy results. (b) Visualization of Camp comprehensive 
feature information entropy results. (c) Visualization of combined Damaged_Building and Camp comprehensive 
feature information entropy results.

(a) (b)

(c)
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 Considering people’s perception of the color of map features, we display a building damaged 
in the earthquake in orange, indicating that the building has been affected by the disaster. The 
(R, G, B) value of orange is (222, 158, 102) and its gray-scale value is 170.752. The areas with a 
high population density on campus are indicated in green, which suggests a large flow of people 
in such areas and no disaster impact. The (R, G, B) value of green is (115, 178, 115) and its gray-
scale value is 151.981. The values of R in the (R, G, B) values of orange and green are markedly 
different. In this paper, R, G, and B are different in order to represent the two area objects in the 
experiment, and the control variable method is used to verify the influence of different colors of 
different elements in the disaster map on the disaster severity analysis. We next discuss several 
cases of interest.
(1) G-value varies widely
 To make the colors of the two area objects highly recognizable, when R and B are both 115, G 
is set to 0 for the Damaged_Building objects and 255 for the Camp objects. The colors are shown 
in Fig. 11. Then the gray-scale value of Damaged_Building is 47.495 and that of Camp is 197.18.
(2) B-value varies widely
 Here, R and G are both fixed at 115 and B is set to 255 for a Damaged_Building object and 0 
for a Camp object. The colors are shown in Fig. 12. Then the gray-scale value of Damaged_
Building is 130.96 and that of Camp is 101.89.
(3) R-, G-, and B-values all vary widely
 The (R, G, B) value is set to (0, 0, 0) for a Damaged_Building object and (255, 255, 255) for a 

Fig. 10. (Color online) Comparison of missing features. (a) No missing information. (b) Missing geometric feature 
information. (c) Missing spatial distribution feature information. (d) Missing type feature information.

(a) (b)

(c) (d)
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Camp object. The colors are shown in Fig. 13. Then, the gray-scale value of a Damaged_Building 
object is 0 and that of a Camp object is 255.
 For each of the three cases, the information entropy visualization results are shown in Fig. 14.
 Combined with the lack of characteristic indicators, the color difference of the two area 
objects has little effect on the information entropy results, thus, it has little impact on the results 
of disaster severity analysis.

4.3 Analysis and discussion of results

 By analyzing the information entropy calculation results, we find that the relationship 
between the amounts of information of various map elements obtained using the model proposed 
in this paper is plausible and reasonably perceived by a human being, but the amount of 
information obtained by the Shannon information entropy model does not conform to the spatial 
cognitive understanding of humans. Specifically, we give a detailed comparison of the two 
models below.
(1)  The visualization results of the comprehensive feature information entropy obtained from the 

elements in Fig. 7 are shown in Fig. 8, where (c) shows that the comprehensive feature 
information entropy of the elements in the lower left corner is relatively large, which is 
mainly for two reasons. The first reason is that there are overlapping parts of Damaged_
Building and Camp objects in this area, that is, the area with a high population density in the 
campus with buildings destroyed in the earthquake, which makes the characteristic 
information entropy of this area high. The second reason is that the spatial distribution 
characteristics have a greater impact on the information entropy than geometry and type, 
while the lower left area has a more intensive distribution of elements and a more complex 
spatial distribution relationship than other areas, resulting in greater information entropy of 

Fig. 11. (Color online) Two area objects with greatly differing G-values. (a) Color of Damaged_Building object. (b) 
Color of Camp object.

Fig. 12. (Color online) Two area objects with greatly differing B-values. (a) Color of Damaged_Building object. (b) 
Color of Camp object.

(a) (b)

(a) (b)
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the comprehensive characteristics of this area than in other areas. The calculation of the 
comprehensive characteristic information entropy of Damaged_Building and Camp elements 
and the visualization of results are conducive to the rapid identification of areas greatly 
affected by earthquakes and the implementation of missions for rescue assistance. This 
calculation also provides a theoretical reference for the design and production of disaster 
thematic maps.

(2)  The comprehensive feature information entropy model of map area objects fully considers 
the geometric, spatial distribution, and type characteristics of Damaged_Building and Camp 
features, including their size, irregularity, topological relationship, distance relationship, and 
color, while the Shannon information entropy model only considers the size of features and 
the number of adjacent features. Therefore, the information types and influencing factors 
considered in the area object comprehensive feature information entropy model are relatively 
complete, and the amount of information obtained is more accurate, resulting in a more 
effective transmission function for disaster map visualization.

(3)  In the experimental data of this study, the Damaged_Building features have more data than 
the Camp features, and the size relationship between the two types of calculated features is 
reasonable, conforming to the visual cognition of the human brain, while the amount of 
information obtained by the Shannon information entropy model does not conform to human 
cognition, which also verifies the view expressed by Liu et al. (15) As shown in Fig. 15, on the 
whole, the comprehensive feature information entropy model takes into account the spatial 
relationship between various elements in the map. There is almost no information in the 
blank area of the map, thus, the information entropy is almost zero, and the information is 
distributed in the element distribution area. The Shannon information entropy model shows 
that most of the blank areas in the map have information entropy values, which do not reflect 

Fig. 13. (Color online) Two area objects with greatly differing R, G and B values. (a) Color of Damaged_Building 
object. (b) Color of Camp object.

(a) (b)

Fig. 14. (Color online) Information entropy visualization results for three cases of interest.
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the spatial distribution differences between objects. Locally, as shown by the red areas in Fig. 
15, areas 1, 2, and 4 have different information entropy ranges corresponding to the different 
distributions of the two types of elements. The information entropy range obtained by the 
comprehensive feature information entropy model is relatively refined, while the visualization 
results obtained by the Shannon information entropy model are rough and are not conducive 
to the rapid evaluation of disaster information in earthquakes. There are multiple elements in 
areas 3, 5, and 6. The information entropy of each area object obtained by the comprehensive 
feature information entropy model is different from the entropy of its surrounding 
environment, reflecting the feature difference of the object. However, the entropy of some 
objects is almost the same as that in the surrounding environment in the Shannon information 
entropy model calculation results, which does not reflect the characteristics of element 
information and is not conducive to the timely identification of damaged objects in 
earthquakes and other disasters.

Fig. 15. (Color online) Partial maps of the results of the two models. (a) Result analysis diagram of the 
comprehensive feature information entropy model. (b) Result analysis diagram of the Shannon information entropy 
model.

(a)

(b)
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(4)  The spatial distribution features have a major impact on the comprehensive feature 
information entropy of the map area objects, as shown in Fig. 10. According to the 
experimental results, the comprehensive feature information entropy model of area object can 
evaluate the importance of feature indicators that affect the size of the information entropy, 
and the spatial distribution characteristics can be used as important indicators that also affect 
the information entropy, providing theoretical support for the measurement of map 
information and playing an important role in the design and production of disaster thematic 
maps.

 Xie et al. (22) calculated information at each level of each type of impact factor of geological 
disasters and superimposed the information to obtain a distribution map of the geological 
disaster susceptibility index. Then, they graded and evaluated the geological disaster 
susceptibility. The visualization results of the information entropy obtained by their method are 
shown in Fig. 16.
 Xie et al. (22) used points to represent disaster assessment, which lacks an association with the 
surrounding adjacent areas. As can be seen from Fig. 16, if points are used, the spatial 
relationship between objects cannot be well reflected and lacks continuity. Therefore, we 
calculated the information entropy of the area and used the centroid of each area object to 
visualize the results of kernel density analysis. The two studies differ in the selection of the 
severity analysis factors affecting the disaster map; these can be selected in accordance with the 
research focus.

5. Conclusions

 As an important indicator for monitoring and evaluating changes and complex information in 
the field of artificial intelligence, an information entropy calculation model is introduced into the 
area of disaster mapping, which can provide scientific, reasonable, intuitive, and effective data 
visualization and analysis results useful in post-disaster rescue. In the case of massive map data, 
the calculation of map information is more complicated and many factors must be considered, 
and the simple use of probability and statistics as a measurement model ignores the regular 
characteristics of features. The experimental results show that the comprehensive feature 
information entropy calculation model of map area objects combines the geometry, spatial 

Fig. 16. (Color online) Information entropy visualization results. 
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distribution, and disaster type characteristics of map elements; quantitatively describes the 
indicators; calculates the comprehensive information entropy of disaster data using the feature 
model; and compares the influence of different indicators on the entropy of the map information. 
Moreover, the results of experiments conducted in this study show that the comprehensive 
feature information entropy calculation model is rational, can effectively improve information 
transmission, and will provide theoretical support for emergency mapping oriented toward 
disaster data. This paper provides a useful exploration of emergency mapping of disaster areas. 
However, emergency response mapping in the contemporary era of artificial intelligence 
requires intelligent and dynamic decision-making based on spatial information, and there are 
many types of data that must be considered for disasters. Moreover, the influence of time factors 
must also be considered in future work.

Acknowledgments

 The authors acknowledge the data support from “National Earth System Science Data Center, 
National Science & Technology Infrastructure of China. (http://www.geodata.cn)”.

References

 1 R. F. Liu: Management and Science and Technology of Small and Medium sized Enterprises (First Decade) 2 
(2015) 163. https://doi.org/10.3969/j.issn.1673-1069.2015.04.111

 2 Z. L. Li, Q. L. Liu, and P. C. Gao: Acta Geodaetica et Cartographica Sinica 45 (2016) 757. https://doi.
org/10.11947/j.AGCS.2016.20160235

 3 J. M. Liu, Y. G. Ding, and Y. Li: J. Nat. Disasters 5 (2004) 16. https://doi.org/10.3969/j.issn.1004-
4574.2004.05.003

 4 A. Kolácný: Cartographic J. 6 (1969) 47.
 5 H. M. Liu: Research on the measurement method of map spatial information, Central South University (2012).
 6 Z. L. Li, W. Z. Xu, and Z. Xu: Acta Geodaetica et Cartographica Sinica 50 (2021) 1033. https://doi.

org/10.11947/j.AGCS.20210072
 7 C. E. Shannon: The Bell Syst. Tech. J. 27 (1948) 379.
 8 V. I. Sukhov: Geod. Aerophotogr. 10 (1967) 212.
 9 G. M. Kirschbaum, K. H. Meine, and K. Frenzel: International Yearbook of Cartography, V. I. Sukhov, Ed. 

(1970) p. 41.
 10 R. Knopfli: Communication Theory and Generalization, D. R. Fraser Taylor, Ed. (New York, 1983) pp. 177–

218.
 11 Z. Y. He: Geomatics Inf. Sci. Wuhan Univ. 12 (1987) 70. https://doi.org/10.13203/j.whugis1987.01.007 
 12 W. J. Ou and X. L. Yao: Map 4 (1988) 5. https://doi.org/CNKI:SUN:DITU.0.1988-04-001
 13 Z. L. Li and P. Z. Huang: Proc. 20th Int. Cartographic Conf. (2001).
 14 Z. L. Li and P. Z. Huang: Int. J. Geogr. Inf. Sci. 16 (2002) 699.
 15 H. M. Liu, M. Deng, and Z. J. He: J. Earth Inf. Sci. 14 (2012) 744.  https://doi.org/10.3724/SP.J.1047.2012.00744 
 16 H. M. Liu and M. Deng: J. Surv. Mapp. Sci. Technol. 30 (2013) 191. https://doi.org/10.3969/j.issn.1673-

6338.2013.02.019
 17 J. Chen, M. Deng, and F. Xu: Surv. Mapp. Sci. 35 (2010) 74. https://doi.org/10.16251/j.cnki.1009-

2307.2010.01.012 
 18 H. M. Liu, M. Deng, and Z. D. Fan: Acta Geodaetica et Cartographica Sinica 43 (2014) 1092. https://doi.

org/10.13485/j.cnki.11-2089.2014.0154
 19 H. L. Liu: J. Surv. Mapp. Sci. Technol. 3 (1992) 49.
 20 J. Gao: Spatial Cognition of Maps and Cognitive Cartography (Map of China Publisher, Beijing, 1991) p. 12. 
 21 J. J. Wu: Xidian University (2014). https://doi.org/CNKI:CDMD:1.1014.324851
 22 M. L. Xie, N. P. Ju, J. J. Zhao, Q. Fan, and Z. Y. He. Geomatics Inf. Sci. Wuhan Univ. 46 (2021) 1003. https://

doi.org/10.13203/j.whugis20190317

http://www.geodata.cn
https://doi.org/10.3969/j.issn.1673-1069.2015.04.111
https://doi.org/10.11947/j.AGCS.2016.20160235
https://doi.org/10.11947/j.AGCS.2016.20160235
https://doi.org/10.3969/j.issn.1004-4574.2004.05.003
https://doi.org/10.3969/j.issn.1004-4574.2004.05.003
https://doi.org/10.11947/j.AGCS.20210072
https://doi.org/10.11947/j.AGCS.20210072
https://doi.org/10.13203/j.whugis1987.01.007
https://doi.org/CNKI:SUN:DITU.0.1988-04-001
https://doi.org/10.3724/SP.J.1047.2012.00744
https://doi.org/10.3969/j.issn.1673-6338.2013.02.019
https://doi.org/10.3969/j.issn.1673-6338.2013.02.019
https://doi.org/10.16251/j.cnki.1009-2307.2010.01.012
https://doi.org/10.16251/j.cnki.1009-2307.2010.01.012
https://doi.org/10.13485/j.cnki.11-2089.2014.0154
https://doi.org/10.13485/j.cnki.11-2089.2014.0154
https://doi.org/CNKI:CDMD:1.1014.324851
https://doi.org/10.13203/j.whugis20190317
https://doi.org/10.13203/j.whugis20190317

