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 Rapid image acquisition for a region affected by an earthquake is important to manage the 
rescue operation. The use of an unmanned aerial vehicle (UAV) to rapidly cruise an affected 
region and obtain very high resolution (VHR) images is highly advantageous. However, haze is a 
problem for many UAV aerial images, especially when UAVs cross clouds. In this paper, we 
present a parallel predicting workflow that cooperates with Swin Transformer UNet (ST-UNet) 
for this task. ST-UNet utilizes the Swin Transformer instead of a convolutional layer (CNN), 
which greatly enhances the processing speed without accuracy loss. The predicting workflow 
employs parallel processing and a reasonable data structure to maximize the computing 
resources for rapid processing. To demonstrate the advantageousness of the proposed workflow, 
we employed three public remote sensing datasets for evaluation, and the proposed ST-UNet 
obtained the highest accuracy and speed. Furthermore, the high dehazing performance of 
ST-UNet was demonstrated using a real post-earthquake scene.

1. Introduction

 The rapid and accurate mapping of earthquake-induced infrastructure damage is an 
important task. Currently, unmanned aerial vehicles (UAVs) are commonly used to accomplish 
this task as they provide high-fidelity images and flexible imaging of affected regions in a rapid-
response mode. The UAV must sometimes cross a cloudy environment in this task, which leads 
to hazed images. Hazed images have greatly reduced visibility and illumination, leading to low 
accuracy in detection tasks for post-earthquake evaluation, such as the detection of damaged 
roads and buildings. Image dehazing technology, which recovers the visibility and illumination 
of original images, is one of the most recent achievements in artificial intelligence. Image 
dehazing algorithms can be grouped into three categories. 1) Image enhancement(1,2) is a method 
with low complexity that enables rapid processing. However, it is difficult for a simple 
mathematical formula to cover all situations in the real world, making the results highly 
dependent on the parameter settings. 2) Physical dehazing(3,4) utilizes prior knowledge based on 

mailto:shenlujiang@must.edu.mo
https://doi.org/10.18494/SAM4059
https://myukk.org/


4030 Sensors and Materials, Vol. 34, No. 11 (2022)

an atmospheric scattering model to estimate the parameters of the dehazing model for an image. 
However, obtaining the prior knowledge requires a very large amount of data to be collected, 
and this method cannot cover all situations, leading to frequent failure during processing. 3) 
Deep learning technology [convolutional neural networks (CNNs),(5) generative adversarial 
networks (GAN),(6) etc]. are used to generate dehazing systems. In general, high-quality images 
can be restored using state-of-the-art deep neural networks (DNNs). 
 Although dehazing methods based on DNNs have very promising accuracy, they mostly 
process normal images. Several methods have also been proposed for dehazing remote sensing 
images. However, direct dehazing using existing DNNs on very high resolution (VHR) images 
has the following issues:
1) The image size is very large for VHR images, making it difficult to input the image to the 

DNN in a single step.
2) The response time for post-earthquake evaluation should be very short for rapid management, 

but DNNs generally have a very long processing time.
 To resolve the above issues, we propose a workflow for rapid VHR image dehazing. The 
workflow consists of three steps. 1) Parallel processing technology is employed to efficiently 
divide VHR images, allocate the resources of the system memory, and maximize the usage rate 
of the proposed workflow. 2) A shallow-weight transformer DNN is designed to reduce the 
processing time of VHR earthquake images. 3) Speeding up technology is used to reduce the 
computing time with very limited accuracy loss.
 To demonstrate the feasibility of the workflow, we employ three common datasets to test the 
proposed method. We examined the processing speed for each VHR image and compared our 
proposed method with other methods in terms of speed and accuracy. The results illustrate that 
the proposed workflow has a very high processing speed with promising accuracy compared 
with other state-of-the-art methods. Finally, the proposed workflow is employed in a real 
earthquake scene, and the results show the marked enhancement of images due to scene 
dehazing.

2. Dehazing Using ST-UNet

 The attention-based neural network and transformer have been well studied and perform 
similarly to CNNs. Moreover, the complexity of the transformer is much lower than that of 
CNNs. Rapid and accurate processing is required to dehaze images obtained after an earthquake. 
We proposed the use of Swin Transformer UNet (ST-UNet) for this task.

2.1 Downsampling

 A DNN first downsamples an input image three times to extract features at different scales 
from the inputting image. We assume that the input of the model is , ,  h w cI R∈ , where h is the 
height of the feature map, w is the width of the feature map, and c is the channel depth. Then, for 
each scale, a 3 × 3 convolutional layer is employed before downsampling, whose shape is 

, , 
0  h w cF R . The initial feature map is downsampled to half its size ( /2, /2, 

1
h w cF R∈ ) by a 3 × 3 
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convolutional layer whose padding is 1 and stride is 2. Then, in the second stage of 
downsampling, we apply the Swin Transformer blocks twice, where Fk is selected as the 
downsampling input. The downsampled stages are processed k times, and we select Fk as the 
deepest feature map for the subsequent upsampling. We double the channel depth c during each 
downsampling, i.e., 13 2 −= × .
 
2.2 Upsampling

 The decoder is symmetrical to the encoder in its shape and also contains k stages in different 
scales. The upsampling method employs k−1 Swin Transformer modules and a 3 × 3 
convolutional layer. For upsampling, a 3 × 3 transposed convolution is employed to increase the 
size of the feature map from /2, /2, 

1
h w c

kF R− ∈  to ,  , /2
1

h w c
kF R− ∈ . During the same upsampling, 

the depth of the feature map is also halved, i.e., it has the same kernel size as the encoder.
 
2.3 Skipping connection

 A skipping connection is employed to connect the downsampling encoder to the upsampling 
decoder. The encoder , , h w cE R∈  and the decoder , , h w cD R∈  are connected, whose scales are of 
the same size; then, the DNN generates the concatenation , ,2*h w cC E D= + . A 3 × 3 convolutional 
filter is employed to return , ,2*h w cC  to , ,h w cC .

2.4 Swin Transformer blocks

 The Swin Transformer(7) is extended by a traditional transformer and utilized in several 
tasks. Because the attention part in the transformer enables long-range information transfer in 
the model, the transformer is also applied in computer vision.(8) The major challenge is the image 
size, i.e., the size of an image (especially a VHR image) saved in the memory is very large. 
Therefore, a high computing cost exists if the brute force strategy used in CNNs is employed.
 The Swin Transformer utilized in computer vision builds hierarchical feature maps by 
integrating image patches in a dense layer, but with low computation complexity with linear 
calculation by using a self-attention module based on a local window. As shown in Fig. 1, the 
Swin Transformer block is doubled in size during encoding and decoding, and layer 
normalization is employed before them. Residual connections are used to integrate pre-
information in both processes. Common window-based multi-head self-attention and shifted 
window multi-head self-attention are also employed in the patches.(9)

3.	 Proposed	Workflow

 As mentioned earlier, the dehazing of VHR images has a much higher computing cost than 
common computer vision tasks because of the large image size, meaning that the model cannot 
import a VHR image to the DNN in a single time. Therefore, we design a workflow to solve this 
issue. 
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 As shown in Fig. 2, rather than importing a whole image into the model at one time, we first 
divide a whole image into small patches with unique image sub-IDs. As the prediction by DNNs 
requires much less GPU computation than training, parallel processing by increasing the batch 
size is applied to maximize the rate of utilization of computer components. Before the image is 
divided into small patches, an image decoding procedure is essential. However, decoding a VHR 
image is also time-consuming. As a result, we employ the multi-CPU to decode various VHR 
images in parallel at the same time and save them in the RAM. Then, a dividing module is 
employed to divide the decoded VHR images to small patches. On each patch, a unique ID is 
saved. Afterward, ST-UNet is employed to dehaze each patch, and the result is directly saved on 
the original image by replacing the initial pixels. Finally, the dehazed image is outputted to be 
saved. Moreover, tensorRTX is employed to increase the speed of the DNNs.

Fig. 1. (Color online) Architecture of ST-UNet.

Fig. 2. (Color online) Workflow of predicting optimizing method.
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4. Experiment

4.1 Training details

 An Intel I7 12700k is employed as the CPU with 64 GB DDR4 RAM, and two Titan RTX 
GPUs are employed as the platform. PyTorch is employed for the training and testing, and the 
two Titan RTX GPUs are used to train the model in the Ubuntu 18.04.1 LTS system. The initial 
learning rate is set to 0.001, and the Adam optimizer is used to accelerate the training. We train 
the network for 100 epochs with a batch size of 16. 

4.2 Indicators used for quantitative evaluation

 To quantitatively evaluate the dehazing effectiveness of different methods, we use the two 
most common evaluation indicators for the dehazing task, i.e., the peak signal-to-noise ratio 
(PSNR) and structural similarity index (SSIM). PSNR indicates the error between the 
corresponding pixels, which is an error-sensitive image quality evaluation index. In general, a 
higher PSNR value means higher similarity between the dehazing results and the ground truth, 
and less image distortion. SSIM measures the image similarity from the three aspects of 
luminance, contrast, and structure. A higher SSIM value means that the results after dehazing 
are closer to the ground truth.

4.3 Establishment of dataset

 To train the proposed ST-UNet for the dehazing task, it is necessary to generate a dataset. We 
generate hazed images using a non-uniform haze-adding algorithm,(9) and we employ two 
typical aerial view and haze-free datasets as basic datasets for training, i.e., AID30(10) and 
RSSCN8.(11) 
 AID30 is a remote sensing dataset open sourced by Wuhan University, which is used for 
image recognition. The images in this dataset have 0.5–0.8 m resolution and 600 × 600 image 
size. In total, 660 haze-free images are employed to synthesize the non-uniform haze-added 
training set. The RSSCN8 dataset is a 400 × 400 aerial view image published by Wuhan 
University. We select 164 haze-free images to serve as the validation set. To test the proposed 
images, we select 22 AID30 images and 18 Google Earth images.  

4.4 Quantitative evaluation

 Dehazing VHR images generally involves addressing heavy haze, non-uniform haze, and 
non-uniform illumination. We employ 64 challenging images to address these challenges, and 
we compare ST-UNet with other state-of-the art dehazing DNNs, i.e., DehazeNet,(5) DEFADE,(12) 
SID,(13) NLD, (14) CAP,(15) PFF-Net,(16) W-U-Net,(17) and FCTF-Net.(18) We set the input image 
size to 512 × 512 for all DNNs as shown in Fig. 3.
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 Table 1 shows a comparison of the results for the proposed ST-UNet with eight other state-of-
the-art methods. DEFADE, CAP, SID, and NLD perform considerably worse than the other 
DNN-based methods for all indicators, i.e., speed, PSNR, and SSIM. These methods require 
over 0.5 s on average to process each image because they generally employ a CPU core for 
calculation. In addition, their PSNR (avg. 18) and SSIM (avg. 0.75) values are lower than those 
for the DNN-based methods. Therefore, they are difficult to employ in dehazing earthquake 
scenes because of their low speed and accuracy. In contrast, the DNN-based methods obtain 
very promising accuracies. For example, DehazeNet has PSNR and SSIM values of 19.1753 and 
0.7886, respectively, and a processing time of only 0.12 s/image. PFF-Net, W-U-Net, and FCTF-
Net have an average PSNR of about 23 and an SSIM of 0.88, which are much higher than the 
values for the traditional methods. However, they still require a very long time for processing 
(over 0.2 s/image), making them difficult to deploy in a real-time system. ST-UNet has very high 
values of PSNR (25.8508) and SSIM (0.9248) and has an average processing time of only 0.08 s/
image. Moreover, when using half-float (OP), although the accuracy decreases slightly (PSNR of 
25.4239 and SSIM of 0.9162), the average processing time is halved to 0.04 s/image, enabling 
very fast real-time post-earthquake image dehazing.
 Having demonstrated the high performance of the proposed DNN, we next consider the 
relationship between the image size and the processing speed and accuracy. Table 2 shows the 
results of processing images of different sizes. When the image size used in the DNN is reduced 

Fig. 3. (Color online) Visualization on testing dataset.

Table 1
Quantitative evaluation.
Method Speed (s/image) PSNR SSIM
DehazeNet 0.12 19.1753 0.7886
DEFADE 0.45 17.2354 0.7521
SID 0.64 17.1688 0.7684
NLD 0.56 15.3500 0.7324
CAP 0.71 17.4218 0.7460
PFF-Net 0.28 21.7652 0.8468
W-U-Net 0.24 23.1535 0.8720
FCTF-Net 0.38 25.4378 0.8924
ST-UNet 0.08 25.8508 0.9248
ST-UNet (OP) 0.04 25.4239 0.9162
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from 512 × 512 to 128 × 128 and 256 × 256, PSNR significantly decreases to 15.1722 and 19.6522 
and SSIM significantly decreases to 0.6924 and 0.7823, respectively. In contrast, when the size 
of the input image is increased to 1024 × 1024, the processing speed greatly decreases to 
0.16 s/image and PSNR and SSIM also decrease to 24.4457 and 0.9062, respectively. Therefore, 
512 × 512 is the most reasonable image size for this task.

4.5 Dehazing in real earthquake scene

 Finally, we demonstrate the feasibility of the proposed ST-UNet for real post-earthquake 
scenes. We select 62 VHR images (5240 × 3840) obtained after the Ya’An Earthquake and 
process them with ST-UNet to calculate the average speed and evaluate the visualization results. 
 The visualization results are shown in Fig. 4. Significantly, the proposed ST-UNet obtains 
very promising dehazing results, even when images are taken in dense cloud. All the buildings 

Fig. 4. (Color online) Visualization for real earthquake scenes. 

Table 2
Image size vs processing speed and accuracy.
Method Speed (s/image) PSNR SSIM
ST-UNet (128 × 128) 0.007 15.1722 0.6924
ST-UNet (256 × 256) 0.02 19.6522 0.7823
ST-UNet (512 × 512) 0.04 25.4239 0.9162
ST-UNet (1024 × 1024) 0.16 24.4457 0.9062
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and roads can be clearly recognized in a suitable color without abnormal illumination. Moreover, 
the processing speed in ST-UNet using the workflow is high (0.97 s/image), making post-
earthquake evaluation very fast. Therefore, we consider that the proposed ST-UNet and 
workflow can be used in real-world tasks with outstanding processing speed and accuracy.

5. Conclusions

 In this paper, we propose a dehazing workflow for VHR image processing that enables rapid 
real-time post-earthquake scene evaluation. The proposed ST-UNet achieves very high 
processing accuracy with significantly higher precision and processing speed than other state-
of-the-art methods. We also explore the potential application of ST-UNet in real earthquake 
scene evaluation, and obtain high-quality and clear dehazed images with a processing time of 
only 0.97 s per VHR image. The proposed workflow takes advantage of the fast and robust 
dehazing process; therefore, will investigate processing in post-earthquake scenes covering 
larger areas in the near future.
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