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 Most existing robot arms are controlled using wired or wearable controllers. A user must 
enter coordinates or control single-axis coordinate systems so that a robot arm can reach a 
designated destination. In this study, we developed a six-axis robot arm with a leap motion 
controller. The end position and coordinates of the developed robot arm changed in accordance 
with those of the right palm. By using the C# Web application programming interface, the 
coordinates of the right palm (X, Y, Z, pitch, yaw, and roll) were immediately uploaded to a 
webpage and shared in a local area network. Subsequently, the Python automatic indexing 
program was used to read the webpage data to construct a homogeneous matrix for the end of 
the robot arm. Finally, inverse kinematics was used to calculate the rotation angle of the motor of 
each axis. The finger bending ratio could be used to control the opening angle of the gripper of 
the robot arm. We measured the accuracies of the six-axis robot arm at two positions. At Position 
1, the pose accuracies of the X-axis (APx), Y-axis (APy), and Z-axis (APz) were −6, 0, and −9 mm, 
respectively. The three-axis standard deviation of Position 1 was 2 mm, the pose accuracy (APp) 
was 11 mm, and the pose repeatability (RPl) was 5 mm. At Position 2, the pose accuracies of the 
X-axis (APx), Y-axis (APy), and Z-axis (APz) were 10, −7, and −12 mm, respectively. The three-
axis standard deviation of Position 2 was 2 mm, the pose accuracy (APp) was 17 mm, and the 
pose repeatability (RPl) was 4 mm.

1. Introduction

 One of the aims of the Fourth Industrial Revolution is to create lights-out factories, also 
known as dark factories, where there is zero or very low human activity on site and the factory 
can operate in the dark. Data are collected to train computers to analyze situations of the 
production line, and robot arms are used to replace humans in automatic production lines. Spray-
painting tasks often involve volatile gases and dust, which may result in an explosion. Therefore, 
articulated robotic arms must be able to resist explosions. In addition, the required accuracy for 
paint spraying motion to achieve an even paint cover on the surfaces of complex workpieces is 
relatively low; therefore, paint spraying tasks are relatively easy for robot arms. When a 
controller is required for the spray painting process to protect laborers’ physical health and 
ensure their safety, the spray painting path to be adopted will not be intuitive and overpainting 
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may occur. This problem can be overcome by incorporating the hand gestures of experienced 
spray paint workers into robot arms. To achieve this, data must be collected from experienced 
spray paint workers wearing controllers on their body. Nevertheless, this creates discomfort for 
the workers. To reduce this discomfort and increase the intuitiveness of paint control, in this 
study, we integrated a leap motion controller (LMC) with a self-designed robot arm and tested 
the operations of the functions of this integrated system and their feasibility. A Raspberry Pi 
controller was coded as the robot arm controller. The LMC was connected with a desktop 
computer through USB 3.0. Data were transmitted through a network architecture. 
 Researchers have conducted extensive research on robotic manipulators on a fixed base and 
made many achievements in dynamic modeling.(1,2) Forward kinematics involves using the angle 
of the motor of each axis and matrix operations to obtain homogeneous matrix coordinates for 
the end position. Therefore, when using the coordinates of the homogeneous matrix of the end 
position to control a robot arm, inverse kinematics must be used for path planning and control 
mode calculations. Huang et al.(3) stated that robot arms with six or more degrees of freedom 
(DOFs) can achieve any required posture to complete tasks. The problems of singular allocation 
and nonlinearity may occur in inverse kinematics. Vosniakos and Kannas(4) used genetic 
algorithms for the inverse kinematic control of robot arms. They achieved high linear translation 
stability for the robot arms; however, the controller required extremely high calculation abilities. 
Raza et al.(5) carried out optimization analysis involving parametric computer-aided design 
modeling and finite-element analysis to design a robot arm. They designed several connection 
methods for robot arms and conducted a subsequent analysis. They also used Robo-Analyzer to 
analyze stress and strain, and they determined favorable thicknesses and areas. Park et al.(6) used 
haptic gloves to develop a tele-operated robot for remote environments. Forward kinematics of 
the human body was used to calculate the direction and position of each body part. By feeding 
this information to a humanoid’s inverse kinematics, the humanoid was controlled according to 
the operator’s position and direction. 
 Noncontact control sensors include LMCs and Microsoft Kinect. The Kinect sensor is used to 
present the human torso posture. This sensor has applications in human body interactive games 
and torso posture control.(7) LMCs are used in two-hand spatial sensing, virtual-reality 
environments, hand gesture development, surgery training, finger rehabilitation training, and 
hand robot control.(8) Wu et al.(9) integrated a depth camera and an LMC to track a virtual-reality 
operator’s posture and detailed movements of the operator’s hands. Guerra-Segura et al.(10) used 
an LMC to record writing trajectories and a classifier to distinguish authentic signatures from 
fake ones. The LMC was used to increase the security of signature verification. Asakawa et 
al.(11) developed tactile educational tools and used optical capture by a leap motion module to 
realize the dynamic capability of the tracker device. Aguilar-Lazcano and Rechy-Ramirez(12) 
used an LMC to develop interactive musical games that indicate the degree of recovery of 
patients’ fingers. They used a stable environmental light source for the LMC. Moldovan and 
Staretu(13) adopted an LMC to control an anthropomorphic hand that could simulate a human 
hand’s grasping state. Ahmed et al.(14) used an LMC to control the displacement and rotation of a 
robot manufactured by KUKA. Kim et al.(15) compared the accuracies of the Kinect sensor and 
an LMC by comparing the fixed robot arm displacements obtained with them. 
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 Robot arms can perform complex tasks and increase the effectiveness of automatic production 
lines. Small, high-accuracy robot arms are used in minimally invasive surgery. In surgery, a 
device is operated to control robot arms. Forward kinematics determines the position and 
direction of the robot end part.(16) Hassan et al.(17) used a wearable electromyography signal 
controller to control the lifting and lowering of a robot arm capable of seven arm postures. 
Huang and Lan(18) used a joystick to define functions and control a robot arm. A camera was 
integrated into their system to establish an ultrasound model. Musić et al.(19) used wearable 
capacitor gloves to control humanoids. The distance between the index and middle fingers 
controlled the strength with which the two arms of the humanoid grabbed and carried heavy 
objects. Li et al.(20) used an LMC to control a robot hand so that the joint posture of the robot 
hand matched that of the operator’s hand. In this study, we used an LMC to obtain hand features. 
The position of the palm was shared on a webpage. At the end of the designed six-axis robot arm, 
a web crawler was used to achieve a wired or wireless remote control of the position and 
movement of the end effector of the designed robot arm.
 The rest of this paper is structured as follows. Section 2 presents an introduction to 
kinematics, Sect. 3 describes the system verification, and Sect. 4 presents a discussion on the 
obtained results and the conclusion of this study. 

2. Robot Arm Kinematics Theory 

 A tandem robot arm consists of multiple joint links that form a movement chain. The number 
of joints determines the DOF of a robot arm. From the relationships among the joints and the 
defined joint parameters, the forward kinematics of the end of a robot arm can be calculated.(21,24) 
By contrast, end posture matrices are used to calculate the angle of each joint in inverse 
kinematics. 

2.1 Forward kinematics theory

 A tandem robot arm is connected using links and arm joints to establish a motion model. 
Figure 1 depicts the movement chain of a robot arm. Equation (1) presents the formula for 
calculating the forward kinematics: 

 ( ) ( ) ( ) ( ) ( ) ( )0 0 1 2 3 1 1
1 1 2 2 3 3 4 4 1

n n i
n n b i i iT T T T T T Tθ θ θ θ θ θ− −

== ⋅ ⋅ ⋅ = Π , (1)

where ( )1
1

n i
i i iT θ−
=Π  denotes the homogeneous matrix of the link coordinate system.(10)

 To determine the forward kinematics, the matrix product of the link between the initial 
coordinate system and the end coordinate system is determined. The Denavit–Hartenberg (DH) 
parameter table describes the motion chain of a robot arm. This table is presented in the form of 
a homogeneous matrix. The parameter 1 ( )i

i iT θ−  converts the original coordinate system to 
coordinate system i − 1, which is combined with the fixed coordinate system i. The homogeneous 
matrix in Eq. (2) presents the product of the four parameters. 
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Here, θi is the rotation angle of the Z-axis, di is the length of the Z-axis link, ai is the length of the 
X-axis link, and αi is the rotation angle of the X-axis. Sin and cos are represented by s and c, 
respectively, to simplify the homogeneous matrix. The homogeneous matrix is presented in Eq. 
(3), where R is the rotation matrix and P is the ith coordinate system expressed using vectors. 
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 The robot arm designed in this study is displayed in Fig. 2. Table 1 lists the DH parameters of 
this robot arm and is used to establish the homogeneous matrix of each axis from Eqs. (4)–(10). 
Equation (11) presents the homogeneous matrix of the gripper. The calculations performed using 
this matrix are presented in Appendix 1. 
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Fig. 1. Movement chain of a tandem robot arm.(8)
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Fig. 2. (Color online) Design of the experimental robot arm.

Table 1
DH parameters.
i αi−1 ai−1 di θi
1 0 0 d1 θ1
2 90 0 0 θ2
3 0 a2 0 θ3
4 90 0 d3 θ4
5 −90 0 0 θ5
6 90 0 0 θ6
7 0 0 d7 0
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2.2 Inverse kinematics theory

 Matrices are defined using end coordinate systems. By using the algebraic, geometric, or 
Piper’s solution method, the angle and position of each joint can be obtained. The algebraic 
method requires many matrix calculations and thus a high-end processor. To use Piper’s solution 
method, the hand must meet certain conditions. Therefore, in this study, the geometric method 
was used as the inverse kinematics method to obtain solutions. 
 The DH parameter table was used to determine the inverse kinematics. The geometric 
method was used to calculate the angles of the first, second, and third axes. As presented in Eq. 
(10), the forward matrix contains critical parameters of inverse solutions. The designed six-axis 
robot arm comprised an elbow, an arm, and a wrist. We first defined the elbow and arm 
calculation positions at the centers of the fourth, fifth, and sixth axes. Because of the existence of 
d7, the end matrix of the axis arm can be expressed using Eq. (12). The robot arm was projected 
onto the X–Y plane. The angle of the first axis (Fig. 3) was calculated using Eq. (13). 
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 0 0 6 1
6 7 7T T T −= ⋅  (12)

 1 arctan( / )c cy xθ =  (13)

 To obtain the angles of the second and third axes, the robot arm was projected onto the r–Z 
plane (Fig. 4). The height of the base was subtracted from Pz, as presented in Eq. (14). Then, the 
plane distance r was calculated using Eq. (15). θ3 was solved using the cosine rule [Eq. (16)]. As 
presented in Fig. 4 and Eqs. (17) and (18), θ3 had two solutions, one positive and one negative. 
The negative value was the upper arm solution, and the positive value was the lower arm 
solution. Therefore, the geometric method [Eq. (19)] was used to calculate θ2. The upper arm 
solution is more suitable when the bottom area of the field contains interference, whereas the 
lower arm solution is more suitable when the top area of the field has a height limit or barriers. 

 1zv P d= −  (14)

 2 2 2
x yr P P= +  (15)

 2 2 2 2 cosc a b ab θ= + − ×  (16)
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Fig. 3. Schematic of the calculation of the first axis of the inverse kinematics.
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 ( )2 3 3 2 3 3arctan( / ) arctan( sin / cos )v r d a dθ θ θ= − +  (19)

 A solution was substituted into the original forward equation to obtain 0T3. From 0T3, 0R3 was 
obtained for subsequent calculations. The parameters 0R3 and 0R6 were calculated using Eq. (20). 
The parameters θ4, θ5, and θ6 were obtained using Euler angles. 
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 By using the geometric method and Euler angles, the end matrix of each axis was 
obtained.(21–24)

3.	 Data	Transmission	and	Integrated	System	Verification

3.1 Construction of robot arm for experiment

 The parameters in Table 1 are d1 = 94 mm, a2 = 138 mm, d3 = 160 mm, and d7 = 98 mm. The 
control system was Raspberry Pi 4. Python was used to code the forward and inverse kinematics 
of the control-position-type 180° servo motor. The servo motor’s control signals were transmitted 
using a PCA9685 driver board (Fig. 5). Because the small servo motor only covered the range of 
0–180°, some special angles could not be achieved. This limitation did not affect the experiment.

Fig. 4. Schematic of the calculation of the second and third axes of the inverse kinematics.
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3.2 Data transmission structure

 The structure used to transmit experimental data is shown in Fig. 6. The red frame labeled 1 
is the desktop computer, which is connected to the LMC through USB3.0 and uploaded to the 
local area network using the C# Web application programming interface. The red frame labeled 
2 is the router, which is connected to the LMC through the cable or wireless network. The red 
frame labeled 3 is the robot arm system, and the final position is reached by calculating the 
inverse kinematics and controlling the angle of the servo motor through Raspberry Pi 4.

3.3	 Verification	of	inverse	kinematics	programming	

 After coding with Python and defining the motor angle of each axis, the relevant parameters 
were substituted into Eq. (11) to calculate the homogeneous matrix of the end effector, which 
was used in the inverse kinematics geometric method to calculate the angles of each axis [Eqs. 
(13)–(20)]. The initial angles were set as θ1 = 0°, θ2 = 0°, θ3 = 0°, θ4 = 0°, θ5 = 0°, and θ6 = 0°. The 
homogeneous matrix of the end effector was 

 0
7

1 0 0 138
0 1 0 0
0 0 1 164
0 0 0 1

T

 
 − =
 − −
 
 

. (21)

 In the inverse kinematics calculations, the angle sequence of each axis was [θ1, θ2, θ3, θ4, θ5, θ6] 
and the solution of the angle of each axis was [0, 0, 0, 0, 0, 0]. 

Fig. 5. (Color online) Circuit layout of the experimental robot arm.
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 The position angles were set as θ1 = 50°, θ2 = 120°, θ3 = 150°, θ4 = 0°, θ5 = −50°, and θ6 = 90°. 
The homogeneous matrix of the end effector was 

 0
7

0.77 0.49 0.41 187.69
0.64 0.59 0.49 223.68

.
0 0.64 0.77 288.58
0 0 0 1

T

− − 
 − − − =
 
 
 

 (22)

 In the inverse kinematics calculations, the angle sequence of each axis was [θ1, θ2, θ3, θ4, θ5, θ6] 
and the solution of each axis was [50.0, 120.2, 149.9, 0, −50.4, 90]. The third, fourth, and fifth 
axes were different mainly owing to their different resolutions in the calculations. 
 By using a wireless network, a Python request was adopted to index the webpage XML 
format and edit the values on the index webpage to verify the positioning repeatability and error 
of the designed robot arm. The verification method involved drawing a cross at the origin. The 
end effector was equipped with laser light, as shown in Fig. 7. By using light directed 
perpendicular to the plane, the locations on the X-, Y-, and Z-axes were determined. The 
coordinates obtained when the robot arm moved from Position 1 to Position 2 are presented in 
Table 2. 
 The measurement process was repeated 10 times. After the robot was moved to the designated 
coordinates, the robot arm was stabilized and measurement was conducted. The test method of 
ISO9283 was used to calculate the positioning repeatability of the robot arm in the experiment. 
The corresponding measurement data are displayed in Fig. 8. Tables 3 and 4 present the 
accuracies obtained for Positions 1 and 2, respectively. The three-axis standard deviation (RPl) 
of Positions 1 and 2 was 1 mm, and the difference in their accuracies (APp) was 5 mm. 

3.4	 Integrating	LMC	with	robot	arm	for	verification

 An LMC has a small sensing space. To control a six-axis robot arm larger than an LMC, the 
spatial scope of the LMC must be enlarged. The system was set to allow rescaling. In this study, 
the verification setting position should be twice the initial LCM spatial scope. Therefore, the 
LMC error also doubled. By using the LMC, the six-axis robot arm, the posture in each quadrant, 

Fig. 6. (Color online) Structure used to transmit experimental data.



Sensors and Materials, Vol. 34, No. 10 (2022) 3775

Fig. 8. (Color online) Repeated measurements at Positions (a) 1 and (b) 2.

Fig. 7. (Color online) Measurement of the (a) X-, (b) Y-, and (c) Z-axis positions.

(a) (b) (c)

Table 2
Settings for Positions 1 and 2.

Coordinates
Position 1 (113, 113, 136)
Position 2 (−113, 113, 136)

Table 3
Calculated accuracies for Position 1.
x 106
y 112
z 126
l 2
RPl 5
APx −6
APy 0
APz −9
3Sl 2
APp 11

Table 4
Calculated accuracies for Position 2.
x −102
y 105
z 124
l 1
RPl 4
APx 10
APy −7
APz −12
3Sl 2
APp 17

(a) (b)
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the wrist rotation, and the gripper opening size could be controlled. As displayed in Fig. 9, the 
operator’s palm was located in the second quadrant of the LMC. An interface (i.e., the screen on 
the left) exhibited the palm position and ratio transition position information for the LMC. These 
data were uploaded to a webpage and the six-axis robot arm. When the fingers curled at 100%, 
the gripper was completely closed. When the fingers curled at 60%, the distance between the 
ends of the gripper was 15 mm (Fig. 10). 

4. Discussion and Conclusion

 An LMC was used in this study to control a six-axis robot arm. However, the accuracy during 
the verification process was unsatisfactory. The main reasons for this result were as follows: (1) 

Fig. 10. (Color online) Bending with the fingers curled at (a) 100 and (b) 60%.

Fig. 9. (Color online) Side view of the LMC with the capability of remote wireless control.

(a) (b)
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the small servo motor did not provide feedback to the position signals and (2) a large gap existed 
between the motor and the deceleration mechanism. Moreover, the robot arm was controlled by 
open-circuit pulse width modulation; therefore, the accuracy of the signals could not be verified. 
The links of the robot arm were produced through 3D printing; thus, the assembly error was 
large. Because of the method developed for the stabilization of the second-axis motor, this motor 
lacked support. Additionally, the motor shaft was short. Consequently, the second-axis motor 
was dragged by inertia to lean forward, which resulted in unsatisfactory accuracy for the 
position of each axis. 
 The LMC was used to sense the information of the operator’s right hand. This controller used 
a wireless network to transmit data to the remote six-axis robot arm. The position and direction 
of the end effector of the robot arm instantly followed those of the palm of the right hand, to 
translate or rotate. The opening size of the gripper was controlled using the finger curving ratio, 
which enabled the noncontact control of the robot arm. The position accuracy and positioning 
repeatability in the experiment were lower than expected because the designed robotic arm 
lacked accuracy. However, the forward and inverse kinematics calculation results were accurate. 
 The designed system can be used in dangerous environments to remotely control robot arms 
to complete dangerous tasks, thus ensuring operator safety. For example, the designed system 
can be used to search for highly reactive metals or control robot arms in spray painting. Thus, 
the designed system can reduce the discomfort involved in using wearable devices to control 
robot arms for long periods. 
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